期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SAM2多任务学习的山区地块模糊边界提取
1
作者
黄启厅
凌玉荣
+6 位作者
谢国雪
杨绍锷
杨颖频
李海亮
梁存穗
何新洁
谢意
《南方农业学报》
北大核心
2025年第1期18-28,F0002,共12页
【目的】构建多任务模糊边界提取深度学习模型,解决模糊边界难提取及伪边界难消除的问题,为地块破碎地区的地块边界提取提供参考依据。【方法】以广西河池市宜州区为研究区,通过解译典型山区破碎遥感影像,建立模糊边界提取数据集,引入S...
【目的】构建多任务模糊边界提取深度学习模型,解决模糊边界难提取及伪边界难消除的问题,为地块破碎地区的地块边界提取提供参考依据。【方法】以广西河池市宜州区为研究区,通过解译典型山区破碎遥感影像,建立模糊边界提取数据集,引入SAM2视觉大模型及采用适配器Adapter微调优化其编码器,设计地块属性提取辅助任务,构建多任务模糊边界提取深度学习模型SAM2Xi,并通过对比试验证实该模型在山区地块破碎环境下的模糊边界提取效果。【结果】SAM2Xi模型在全局最佳阈值(ODS)和单图最佳阈值(OIS)上表现最佳,分别为0.663和0.672,显示出最高的边缘检测精度和适应性,但50%精度召回率(R50)略低于DexiNed模型。SAM2Xi模型结合语义信息与边缘特征,增强了模糊边界识别能力,在复杂场景下表现尤为出色;SAM2Xi模型在低对比度和复杂背景下仍然保持高精度,模糊边界区域的细节保留、连贯性和噪声抑制均优于其他模型;此外,SAM2Xi模型在伪边界清除任务中表现最佳,其先进特征提取和优化机制几乎完全消除了伪边界干扰,在各类场景下保持高精度边缘检测,具有更高的鲁棒性和准确性。SAM2Xi模型能成功提取研究区的地块信息(地块图斑数1587597个,总面积145696.646 ha),且提取的地块分布与实际情况高度吻合,具体表现为:(1)在大片耕地范围内可准确划分各地块;(2)可提取建筑物中的零星耕地或园地;(3)可提取林地中能被单独分割的地块(人工林),但自然林基本不会被误识。【结论】基于SAM2多任务学习构建的SAM2Xi模型实现了模糊边界识别与伪边界清除的双重突破,在复杂地形适应性、边界连贯性保持及噪声抑制方面具有明显优势,为我国西南山区复杂地形下地块边界提取及山区农业资源精准管理提供了技术支撑。
展开更多
关键词
地块边界提取
SAM2
多任务学习
遥感影像
SAM2Xi模型
在线阅读
下载PDF
职称材料
题名
基于SAM2多任务学习的山区地块模糊边界提取
1
作者
黄启厅
凌玉荣
谢国雪
杨绍锷
杨颖频
李海亮
梁存穗
何新洁
谢意
机构
广西农业科学院农业科技信息研究所/广西农业遥感工程研究中心
生态环境部生态质量综合监测站
广西
南宁站(农田)
广州大学地理与
遥感
学院
中国热带
农业
科学院
科技
信息
研究所
/海南省热带作物
信息
技术应用
研究
重点实验室
出处
《南方农业学报》
北大核心
2025年第1期18-28,F0002,共12页
基金
国家自然科学基金项目(42201413)
广西重点研发计划项目(桂科AB24153001)
+1 种基金
海南省热带作物信息技术应用研究重点实验室开放基金项目(ZDSYS-KFJJ-202308)
广西农业科学院科技发展基金项目(桂农科2017ZX04)。
文摘
【目的】构建多任务模糊边界提取深度学习模型,解决模糊边界难提取及伪边界难消除的问题,为地块破碎地区的地块边界提取提供参考依据。【方法】以广西河池市宜州区为研究区,通过解译典型山区破碎遥感影像,建立模糊边界提取数据集,引入SAM2视觉大模型及采用适配器Adapter微调优化其编码器,设计地块属性提取辅助任务,构建多任务模糊边界提取深度学习模型SAM2Xi,并通过对比试验证实该模型在山区地块破碎环境下的模糊边界提取效果。【结果】SAM2Xi模型在全局最佳阈值(ODS)和单图最佳阈值(OIS)上表现最佳,分别为0.663和0.672,显示出最高的边缘检测精度和适应性,但50%精度召回率(R50)略低于DexiNed模型。SAM2Xi模型结合语义信息与边缘特征,增强了模糊边界识别能力,在复杂场景下表现尤为出色;SAM2Xi模型在低对比度和复杂背景下仍然保持高精度,模糊边界区域的细节保留、连贯性和噪声抑制均优于其他模型;此外,SAM2Xi模型在伪边界清除任务中表现最佳,其先进特征提取和优化机制几乎完全消除了伪边界干扰,在各类场景下保持高精度边缘检测,具有更高的鲁棒性和准确性。SAM2Xi模型能成功提取研究区的地块信息(地块图斑数1587597个,总面积145696.646 ha),且提取的地块分布与实际情况高度吻合,具体表现为:(1)在大片耕地范围内可准确划分各地块;(2)可提取建筑物中的零星耕地或园地;(3)可提取林地中能被单独分割的地块(人工林),但自然林基本不会被误识。【结论】基于SAM2多任务学习构建的SAM2Xi模型实现了模糊边界识别与伪边界清除的双重突破,在复杂地形适应性、边界连贯性保持及噪声抑制方面具有明显优势,为我国西南山区复杂地形下地块边界提取及山区农业资源精准管理提供了技术支撑。
关键词
地块边界提取
SAM2
多任务学习
遥感影像
SAM2Xi模型
Keywords
land parcel boundary extraction
SAM2
multi-task learning
remote sensing images
SAM2Xi model
分类号
S127 [农业科学—农业基础科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SAM2多任务学习的山区地块模糊边界提取
黄启厅
凌玉荣
谢国雪
杨绍锷
杨颖频
李海亮
梁存穗
何新洁
谢意
《南方农业学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部