期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
PNN与BP神经网络在钢板表面缺陷分类中的应用研究
被引量:
13
1
作者
郭联金
罗炳军
《机电工程》
CAS
2015年第3期352-357,共6页
针对钢板表面缺陷图像信噪比低、特征复杂多变而导致现有的钢板表面缺陷模式识别与分类方法存在的实时性差、精度低、适应性差等问题,研究了基于人工神经网络的分类器,以实现对钢板表面缺陷进行实时有效的分类识别。根据钢板表面划痕、...
针对钢板表面缺陷图像信噪比低、特征复杂多变而导致现有的钢板表面缺陷模式识别与分类方法存在的实时性差、精度低、适应性差等问题,研究了基于人工神经网络的分类器,以实现对钢板表面缺陷进行实时有效的分类识别。根据钢板表面划痕、麻点、夹杂、锈蚀、辊印5类缺陷的特点,从缺陷图像信号中提取了几何特征、灰度特征和Hu矩特征,选取了能够比较全面表征缺陷特征信息的13维特征向量作为神经网络的输入数据,为缺陷识别和分类提供了依据。分别构造了概率神经网络PNN和BP神经网络分类器,对钢板的表面缺陷进行了分类测试,并对测试结果进行了对比分析。实验结果表明,PNN和BP神经网络的识别率分别为87%和81%。PNN在识别准确率、训练速度、追加样本的能力等几方面的综合性能优于BP神经网络。
展开更多
关键词
PNN
BP神经网络
钢板表面
缺陷分类
在线阅读
下载PDF
职称材料
题名
PNN与BP神经网络在钢板表面缺陷分类中的应用研究
被引量:
13
1
作者
郭联金
罗炳军
机构
东莞职业技术学院机电工程系
广州炬森自动化设备有限公司
出处
《机电工程》
CAS
2015年第3期352-357,共6页
基金
东莞职业技术学院2014年科研基金项目(2014c07)
文摘
针对钢板表面缺陷图像信噪比低、特征复杂多变而导致现有的钢板表面缺陷模式识别与分类方法存在的实时性差、精度低、适应性差等问题,研究了基于人工神经网络的分类器,以实现对钢板表面缺陷进行实时有效的分类识别。根据钢板表面划痕、麻点、夹杂、锈蚀、辊印5类缺陷的特点,从缺陷图像信号中提取了几何特征、灰度特征和Hu矩特征,选取了能够比较全面表征缺陷特征信息的13维特征向量作为神经网络的输入数据,为缺陷识别和分类提供了依据。分别构造了概率神经网络PNN和BP神经网络分类器,对钢板的表面缺陷进行了分类测试,并对测试结果进行了对比分析。实验结果表明,PNN和BP神经网络的识别率分别为87%和81%。PNN在识别准确率、训练速度、追加样本的能力等几方面的综合性能优于BP神经网络。
关键词
PNN
BP神经网络
钢板表面
缺陷分类
Keywords
PNN
BP neural network
steel plate surface
defects classification
分类号
TB553 [理学—声学]
TH878 [机械工程—精密仪器及机械]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
PNN与BP神经网络在钢板表面缺陷分类中的应用研究
郭联金
罗炳军
《机电工程》
CAS
2015
13
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部