期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于聚合通道特征及卷积神经网络的行人检测 被引量:7
1
作者 陈光喜 蔡天任 +1 位作者 黄勇 王佳鑫 《计算机工程与设计》 北大核心 2018年第7期2059-2063,2068,共6页
为解决在复杂环境下难以尽可能多地检测到行人的问题,提出一种基于聚合通道特征、通过卷积神经网络提取特征的行人检测算法。采用聚合通道特征的算法尽可能多地产生候选框,通过卷积神经网络提取候选框内物体的深度特征,使用支持向量机... 为解决在复杂环境下难以尽可能多地检测到行人的问题,提出一种基于聚合通道特征、通过卷积神经网络提取特征的行人检测算法。采用聚合通道特征的算法尽可能多地产生候选框,通过卷积神经网络提取候选框内物体的深度特征,使用支持向量机分类器对候选框内的物体进行分类,检测出行人。在公开数据集Caltech和INRIA数据集上进行测试,实验结果表明,与目前主流算法比较,召回率平均提升12%,F值平均增加0.05,能有效减少计算机的计算开销。 展开更多
关键词 行人检测 聚合通道特征 卷积神经网络 候选框 支持向量机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部