期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
青年人心理健康素养与抑郁和焦虑及失眠症状的关系 被引量:2
1
作者 杨雨青 黄婧 +5 位作者 林子新 余彤 陈夕圆 杨宁 钟少玲 周亮 《中国心理卫生杂志》 北大核心 2025年第4期344-349,共6页
目的:探究青年人群心理健康素养水平及其与抑郁、焦虑和失眠症状的关系。方法:选取广州市18~23岁的青年人10273名,采用国民心理健康素养问卷、患者健康问卷抑郁量表(PHQ-9)、广泛性焦虑量表(GAD-7)、失眠严重程度问卷(ISI)进行调查。结... 目的:探究青年人群心理健康素养水平及其与抑郁、焦虑和失眠症状的关系。方法:选取广州市18~23岁的青年人10273名,采用国民心理健康素养问卷、患者健康问卷抑郁量表(PHQ-9)、广泛性焦虑量表(GAD-7)、失眠严重程度问卷(ISI)进行调查。结果:心理健康素养达标1137人(11.1%),存在抑郁症状2758人(26.8%)、焦虑症状1355人(13.2%)、失眠症状4936人(48.0%)。Logistic回归分析显示,调整人口学和生活方式因素后,心理健康素养未达标是抑郁、焦虑、失眠症状的独立危险因素(OR=2.08、1.93、1.49,95%CI:1.74~2.48、1.52~2.46、1.31~1.70)。结论:青年人群心理健康素养水平不足,且心理健康素养缺乏与出现抑郁、焦虑和失眠症状存在关联。 展开更多
关键词 青年 心理健康素养 抑郁 焦虑 失眠
在线阅读 下载PDF
Self-supervised learning artificial intelligence noise reduction technology based on the nearest adjacent layer in ultra-low dose CT of urinary calculi 被引量:3
2
作者 ZHOU Cheng LIU Yang +4 位作者 QIU Yingwei HE Daijun YAN Yu LUO Min LEI Youyuan 《中国医学影像技术》 CSCD 北大核心 2024年第8期1249-1253,共5页
Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Metho... Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Methods Eighty-eight urinary calculi patients were prospectively enrolled.Low dose CT(LDCT)and ULDCT scanning were performed,and the effective dose(ED)of each scanning protocol were calculated.The patients were then randomly divided into training set(n=75)and test set(n=13),and a self-supervised deep learning AI noise reduction system based on the nearest adjacent layer constructed with ULDCT images in training set was used for reducing noise of ULDCT images in test set.In test set,the quality of ULDCT images before and after AI noise reduction were compared with LDCT images,i.e.Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)scores,image noise(SD ROI)and signal-to-noise ratio(SNR).Results The tube current,the volume CT dose index and the dose length product of abdominal ULDCT scanning protocol were all lower compared with those of LDCT scanning protocol(all P<0.05),with a decrease of ED for approximately 82.66%.For 13 patients with urinary calculi in test set,BRISQUE score showed that the quality level of ULDCT images before AI noise reduction reached 54.42%level but raised to 95.76%level of LDCT images after AI noise reduction.Both ULDCT images after AI noise reduction and LDCT images had lower SD ROI and higher SNR than ULDCT images before AI noise reduction(all adjusted P<0.05),whereas no significant difference was found between the former two(both adjusted P>0.05).Conclusion Self-supervised learning AI noise reduction technology based on the nearest adjacent layer could effectively reduce noise and improve image quality of urinary calculi ULDCT images,being conducive for clinical application of ULDCT. 展开更多
关键词 urinary calculi tomography X-ray computed artificial intelligence prospective studies
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部