现有行为识别方法在未能持续覆盖造成视频监控盲区所引起行为数据缺失的情况,难以有效实施特征分析、行为分类补全,无法准确识别出智能体完整的行为动作序列.为此,本文提出一种基于深度学习和智能规划的行为识别方法.首先,利用深度残差...现有行为识别方法在未能持续覆盖造成视频监控盲区所引起行为数据缺失的情况,难以有效实施特征分析、行为分类补全,无法准确识别出智能体完整的行为动作序列.为此,本文提出一种基于深度学习和智能规划的行为识别方法.首先,利用深度残差网络对图像进行分类训练,然后使用递归神经网络对图像特征进行提取深度信息以增强分类效果;其次,运用智能规划的STRIPS(Stanford Research Institute Problem Solver)模型,将深度学习提取的图像特征命题信息转化为规划领域的模型描述文档,并使用前向状态空间搜索规划器推导出完整的行为动作序列.在HMDB51等行为识别公共数据集中,本方法与生成式对抗网络、深度卷积逆向图网络、深度信念网络、支持向量机等同类先进方法相比展现出更好的性能.展开更多
作为流式大数据计算的主要平台之一,Storm在设计过程中由于缺乏节能的考虑,导致其存在高能耗与低效率的问题.传统的节能策略并未考虑Storm的性能约束,可能会对集群的实时性造成影响.针对这一问题,设计了资源约束模型、最优线程重分配模...作为流式大数据计算的主要平台之一,Storm在设计过程中由于缺乏节能的考虑,导致其存在高能耗与低效率的问题.传统的节能策略并未考虑Storm的性能约束,可能会对集群的实时性造成影响.针对这一问题,设计了资源约束模型、最优线程重分配模型以及数据迁移模型.进一步提出了Storm平台下的线程重分配与数据迁移节能策略(energy-efficient strategy based on executor reallocation and data migration in Storm,简称ERDM),包括资源约束算法与数据迁移算法.其中,资源约束算法根据集群各工作节点CPU、内存与网络带宽的资源占用率,判断集群是否允许数据的迁移.数据迁移算法根据资源约束模型与最优线程重分配模型,设计了数据迁移的最优化方法.此外,ERDM通过分配线程减少了节点间的通信开销,并根据大数据流式计算的性能与能效评估ERDM.实验结果表明,与现有研究相比,ERDM能够有效降低节点间通信开销与能耗,并提高集群的性能.展开更多
锂离子电池健康状态(State of Health,SOH)描述了电池当前老化程度,对于提前对电池的故障及失控做出预警避免电池的不安全行为具有重要意义。其估计难点在于难以确定数量合适、相关性高的估计输入以及设计合适的估计算法。通过对现有电...锂离子电池健康状态(State of Health,SOH)描述了电池当前老化程度,对于提前对电池的故障及失控做出预警避免电池的不安全行为具有重要意义。其估计难点在于难以确定数量合适、相关性高的估计输入以及设计合适的估计算法。通过对现有电池老化数据集的研究发现,电池充电过程中电压曲线数据相对稳定,且随着电池的老化出现规律性变化。因此,文中直接采用充电过程中电压数据作为估计SOH的输入,并在数据驱动的框架下,提出了一种基于门控循环神经网络(Recurrent Neural Networks with Gated Recurrent Unit,GRU-RNN)的锂电池SOH估计方法。该方法能够挖掘出一维电压数据中的时序特征和SOH之间的映射规律。在两个公开的电池老化数据集上的实验结果表明,提出的方法达到了1.25%的均方绝对误差和低于5.62%的最大误差,在估计精度上达到现有技术发展水平。展开更多
文摘现有行为识别方法在未能持续覆盖造成视频监控盲区所引起行为数据缺失的情况,难以有效实施特征分析、行为分类补全,无法准确识别出智能体完整的行为动作序列.为此,本文提出一种基于深度学习和智能规划的行为识别方法.首先,利用深度残差网络对图像进行分类训练,然后使用递归神经网络对图像特征进行提取深度信息以增强分类效果;其次,运用智能规划的STRIPS(Stanford Research Institute Problem Solver)模型,将深度学习提取的图像特征命题信息转化为规划领域的模型描述文档,并使用前向状态空间搜索规划器推导出完整的行为动作序列.在HMDB51等行为识别公共数据集中,本方法与生成式对抗网络、深度卷积逆向图网络、深度信念网络、支持向量机等同类先进方法相比展现出更好的性能.
文摘作为流式大数据计算的主要平台之一,Storm在设计过程中由于缺乏节能的考虑,导致其存在高能耗与低效率的问题.传统的节能策略并未考虑Storm的性能约束,可能会对集群的实时性造成影响.针对这一问题,设计了资源约束模型、最优线程重分配模型以及数据迁移模型.进一步提出了Storm平台下的线程重分配与数据迁移节能策略(energy-efficient strategy based on executor reallocation and data migration in Storm,简称ERDM),包括资源约束算法与数据迁移算法.其中,资源约束算法根据集群各工作节点CPU、内存与网络带宽的资源占用率,判断集群是否允许数据的迁移.数据迁移算法根据资源约束模型与最优线程重分配模型,设计了数据迁移的最优化方法.此外,ERDM通过分配线程减少了节点间的通信开销,并根据大数据流式计算的性能与能效评估ERDM.实验结果表明,与现有研究相比,ERDM能够有效降低节点间通信开销与能耗,并提高集群的性能.
文摘锂离子电池健康状态(State of Health,SOH)描述了电池当前老化程度,对于提前对电池的故障及失控做出预警避免电池的不安全行为具有重要意义。其估计难点在于难以确定数量合适、相关性高的估计输入以及设计合适的估计算法。通过对现有电池老化数据集的研究发现,电池充电过程中电压曲线数据相对稳定,且随着电池的老化出现规律性变化。因此,文中直接采用充电过程中电压数据作为估计SOH的输入,并在数据驱动的框架下,提出了一种基于门控循环神经网络(Recurrent Neural Networks with Gated Recurrent Unit,GRU-RNN)的锂电池SOH估计方法。该方法能够挖掘出一维电压数据中的时序特征和SOH之间的映射规律。在两个公开的电池老化数据集上的实验结果表明,提出的方法达到了1.25%的均方绝对误差和低于5.62%的最大误差,在估计精度上达到现有技术发展水平。