时间交织采样是提高模数转换器采样率的一种有效途径。为了完成时间交织采样的通道失配误差方法评估,提出并设计了一套基于4通道时间交织的FPGA高速模数转换采样系统。系统由前端模拟电路、采样阵列、多相时钟电路模块、基于FPGA的数据...时间交织采样是提高模数转换器采样率的一种有效途径。为了完成时间交织采样的通道失配误差方法评估,提出并设计了一套基于4通道时间交织的FPGA高速模数转换采样系统。系统由前端模拟电路、采样阵列、多相时钟电路模块、基于FPGA的数据缓冲与修正处理模块构成。系统采样输出数据通过上传到上位机进行显示与性能指标分析。测试结果表明,该TIADC系统通过对失配误差的数字后端补偿后能稳定工作在1 GS/s采样率。其采样有效位与平均信噪比分别达到7.03 bit与44.1 d B,可以应用于采样失配修正方法的验证与评估。展开更多
针对目前各种基于长短期记忆网络LSTM的句子情感分类方法没有考虑词的词性信息这一问题,将词性与自注意力机制相结合,提出一种面向句子情感分类的神经网络模型PALSTM(Pos and Attention-based LSTM).首先,结合预训练词向量和词性标注工...针对目前各种基于长短期记忆网络LSTM的句子情感分类方法没有考虑词的词性信息这一问题,将词性与自注意力机制相结合,提出一种面向句子情感分类的神经网络模型PALSTM(Pos and Attention-based LSTM).首先,结合预训练词向量和词性标注工具分别给出句子中词的语义词向量和词性词向量表示,并作为LSTM的输入用于学习词在内容和词性方面的长期依赖关系,有效地弥补了一般LSTM单纯依赖预训练词向量中词的共现信息的不足;接着,利用自注意力机制学习句子中词的位置信息和权重向量,并构造句子的最终语义表示;最后由多层感知器进行分类和输出.实验结果表明,PALSTM在公开语料库Movie Reviews、Internet Movie Database和Stanford Sentiment Treebank二元分类及五元情感上的准确率均比一般的LSTM和注意力LSTM模型有一定的提升.展开更多
文摘时间交织采样是提高模数转换器采样率的一种有效途径。为了完成时间交织采样的通道失配误差方法评估,提出并设计了一套基于4通道时间交织的FPGA高速模数转换采样系统。系统由前端模拟电路、采样阵列、多相时钟电路模块、基于FPGA的数据缓冲与修正处理模块构成。系统采样输出数据通过上传到上位机进行显示与性能指标分析。测试结果表明,该TIADC系统通过对失配误差的数字后端补偿后能稳定工作在1 GS/s采样率。其采样有效位与平均信噪比分别达到7.03 bit与44.1 d B,可以应用于采样失配修正方法的验证与评估。
文摘针对目前各种基于长短期记忆网络LSTM的句子情感分类方法没有考虑词的词性信息这一问题,将词性与自注意力机制相结合,提出一种面向句子情感分类的神经网络模型PALSTM(Pos and Attention-based LSTM).首先,结合预训练词向量和词性标注工具分别给出句子中词的语义词向量和词性词向量表示,并作为LSTM的输入用于学习词在内容和词性方面的长期依赖关系,有效地弥补了一般LSTM单纯依赖预训练词向量中词的共现信息的不足;接着,利用自注意力机制学习句子中词的位置信息和权重向量,并构造句子的最终语义表示;最后由多层感知器进行分类和输出.实验结果表明,PALSTM在公开语料库Movie Reviews、Internet Movie Database和Stanford Sentiment Treebank二元分类及五元情感上的准确率均比一般的LSTM和注意力LSTM模型有一定的提升.