轻度认知障碍(MCI)是阿尔茨海默病(AD)的早期阶段,是治疗AD的最佳时期,因此对MCI的诊断非常重要。多模态数据可以全面分析疾病的状况,有利于疾病的准确诊断,但是现有方法并不能同时有效地分析多个模态数据之间的关系,无法有效结合功能...轻度认知障碍(MCI)是阿尔茨海默病(AD)的早期阶段,是治疗AD的最佳时期,因此对MCI的诊断非常重要。多模态数据可以全面分析疾病的状况,有利于疾病的准确诊断,但是现有方法并不能同时有效地分析多个模态数据之间的关系,无法有效结合功能态数据和结构态数据之间的优势。提出一种中心化自动加权多任务学习方法用于MCI的诊断。该方法可以同时学习不同模态的数据,有效地结合数据之间的优势。首先,分别对功能态数据rs-fMRI和结构态数据DTI构造脑网络;其次,基于多模态数据设计新的多任务特征学习模型,每个任务的重要性和模态之间的平衡关系会被自动学习,包括不同模态间的相似性和特异性,以获得稳定且有识别力的表达特征;最后,将选取的特征输入支持向量机模型进行分类诊断。实验基于Alzheimer′s Disease Neuroimaging Initiative(ADNI)公共数据库,包括明显记忆问题(SMC)、早期轻度认知障碍(EMCI)、晚期轻度认知障碍(LMCI)和正常受试者(NC)。所提出的方法对于NC vs SMC、SMC vs EMCI、SMC vs LMCI和EMCI vs LMCI等4种不同类型数据,诊断结果分别为76.67%、79.07%、80.56%和74.29%,与其他传统算法相比,分类准确率都有明显的提高,有望应用于对早期轻度认知障碍的诊断分析。展开更多
对阿尔兹海默(AD)疾病进程的建模研究,有利于在其早期阶段——轻度认知障碍(MCI)进行更准确的诊断。不仅利用多模态影像数据,还分析模态间特征关系,用于增强与AD/MCI相关的特征表达能力。首先,基于典型相关分析融合不同模态间多个感兴...对阿尔兹海默(AD)疾病进程的建模研究,有利于在其早期阶段——轻度认知障碍(MCI)进行更准确的诊断。不仅利用多模态影像数据,还分析模态间特征关系,用于增强与AD/MCI相关的特征表达能力。首先,基于典型相关分析融合不同模态间多个感兴趣区域并生成多模态关系特征表达;其次,基于稀疏最小二乘回归损失函数,以此获得稳定且有识别力的相关性表达特征;最后,使用交叉验证方法将随机选择的训练样本用于支持向量机分类模型,再对测试集受试者进行疾病阶段诊断。实验基于Alzheimer's Disease Neuroimaging Initiative(ADNI)公共数据库的805位受试者,包括AD,MCI和正常受试者(NC)。此方法对于AD vs NC,MCI vs NC和p-MCI(进行性轻度认知障碍)vs s-MCI(稳定性轻度认知障碍)等3种不同类型数据,诊断结果分别为92.01%,74.83%和70.27%。与其他算法相比,分类准确率都有明显提高。表明所提出的方法能够有效应用于多模态数据对阿尔兹海默病的诊断分析研究。展开更多
文摘轻度认知障碍(MCI)是阿尔茨海默病(AD)的早期阶段,是治疗AD的最佳时期,因此对MCI的诊断非常重要。多模态数据可以全面分析疾病的状况,有利于疾病的准确诊断,但是现有方法并不能同时有效地分析多个模态数据之间的关系,无法有效结合功能态数据和结构态数据之间的优势。提出一种中心化自动加权多任务学习方法用于MCI的诊断。该方法可以同时学习不同模态的数据,有效地结合数据之间的优势。首先,分别对功能态数据rs-fMRI和结构态数据DTI构造脑网络;其次,基于多模态数据设计新的多任务特征学习模型,每个任务的重要性和模态之间的平衡关系会被自动学习,包括不同模态间的相似性和特异性,以获得稳定且有识别力的表达特征;最后,将选取的特征输入支持向量机模型进行分类诊断。实验基于Alzheimer′s Disease Neuroimaging Initiative(ADNI)公共数据库,包括明显记忆问题(SMC)、早期轻度认知障碍(EMCI)、晚期轻度认知障碍(LMCI)和正常受试者(NC)。所提出的方法对于NC vs SMC、SMC vs EMCI、SMC vs LMCI和EMCI vs LMCI等4种不同类型数据,诊断结果分别为76.67%、79.07%、80.56%和74.29%,与其他传统算法相比,分类准确率都有明显的提高,有望应用于对早期轻度认知障碍的诊断分析。
文摘对阿尔兹海默(AD)疾病进程的建模研究,有利于在其早期阶段——轻度认知障碍(MCI)进行更准确的诊断。不仅利用多模态影像数据,还分析模态间特征关系,用于增强与AD/MCI相关的特征表达能力。首先,基于典型相关分析融合不同模态间多个感兴趣区域并生成多模态关系特征表达;其次,基于稀疏最小二乘回归损失函数,以此获得稳定且有识别力的相关性表达特征;最后,使用交叉验证方法将随机选择的训练样本用于支持向量机分类模型,再对测试集受试者进行疾病阶段诊断。实验基于Alzheimer's Disease Neuroimaging Initiative(ADNI)公共数据库的805位受试者,包括AD,MCI和正常受试者(NC)。此方法对于AD vs NC,MCI vs NC和p-MCI(进行性轻度认知障碍)vs s-MCI(稳定性轻度认知障碍)等3种不同类型数据,诊断结果分别为92.01%,74.83%和70.27%。与其他算法相比,分类准确率都有明显提高。表明所提出的方法能够有效应用于多模态数据对阿尔兹海默病的诊断分析研究。