碳排放连续在线监测法作为一种高效、可溯源的方法,在我国碳计量领域中逐渐应用。然而,由于烟囱管道的大直径、复杂烟气流场,以及流量计检修维护、粉尘堵塞导致的监测数据中断与异常,烟气流量的准确监测成为一大挑战。为此,提出一种融...碳排放连续在线监测法作为一种高效、可溯源的方法,在我国碳计量领域中逐渐应用。然而,由于烟囱管道的大直径、复杂烟气流场,以及流量计检修维护、粉尘堵塞导致的监测数据中断与异常,烟气流量的准确监测成为一大挑战。为此,提出一种融合变量投影重要性分析(variable importance in projection,VIP)、最大信息系数(maximal information coefficient,MIC)及后向搜索(sequential backward selection,SBS)算法的联合筛选方法,结合支持向量机(support vector machine,SVM)构建烟气流量软测量模型。基于某F级燃气-蒸汽联合循环发电机组,通过VIP值评估辅助变量显著性,并结合MIC和SBS算法,进行变量冗余消除与优化选择,从而提升模型的预测精度和泛化能力。实验结果显示:SVM的表现优于长短时间记忆网络模型,与反向传播神经网络相比具有较好的泛化能力;当辅助变量数量为12时,模型性能最佳,测试集的均方根误差和平均绝对百分比误差均较低,验证了变量筛选方法的有效性;在稳态和非稳态工况下,模型预测值的平均绝对百分比误差小于0.7%,并有一定的滤波作用。展开更多
火力发电企业作为我国能源结构的重要组成部分,长期以来是我国碳排放的主要来源,在我国和全球加速推动低碳经济发展的宏观环境下,火电企业积极响应国家“能耗双控”向“碳排放双控”转变的战略部署。在此背景下,精确计量燃煤电厂的碳排...火力发电企业作为我国能源结构的重要组成部分,长期以来是我国碳排放的主要来源,在我国和全球加速推动低碳经济发展的宏观环境下,火电企业积极响应国家“能耗双控”向“碳排放双控”转变的战略部署。在此背景下,精确计量燃煤电厂的碳排放量变得至关重要。在燃煤电厂碳计量中,烟气流量影响燃煤发电中在线监测法的精度,而燃煤消耗量、燃煤元素碳含量以及飞灰碳含量共同决定核算法的可靠性。目前,大多数燃煤发电企业只对流量和燃煤消耗量进行实时监测,在现场恶劣的环境中对燃煤元素碳含量以及飞灰碳含量进行短周期、高频次的直接监测需要花费较大的人力以及物力,流量监测设备也易受烟道环境影响。而软测量技术以其高效和低成本的特点,可为传统碳排放计量过程中关键参数的监测提供一种替代方法。鉴于此,首先阐述了软测量模型的建立过程,包含数据预处理、辅助变量选择、软测量模型建立以及模型校正。数据预处理能够确保数据质量,提高建模效率;辅助变量选择是从大量潜在的变量中筛选出对目标变量的辅助变量,进一步提高建模效率;软测量模型建立主要是基于机理建模和数据驱动建模,是实现目标变量预测的核心;模型校正通过实际的离线或在线数据,对模型进行进一步优化,提高模型的预测精度。其次,针对碳计量相关参数,分析了烟气流量、燃煤消耗量、燃煤元素碳含量和飞灰碳含量监测存在的问题,论述了软测量技术在上述碳计量关键参数的国内外研究进展和应用,评估了机理建模和数据驱动建模技术的有效性、准确性和实用性。其中,机理分析建模主要基于电厂锅炉进出口的能量平衡以及烟风质量守恒等原理,有着确定的数学物理关系式,具有高度可解释性和稳定性,但是建模过程复杂,预测精度较低;数据驱动建模主要是利用各种机器学习方法,基于电厂分布式控制系统(Distributed control system,DCS)丰富的运行数据,对碳计量关键参数进行“黑箱建模”,克服了机理分析建模复杂的过程分析,精度相对较高,但是建模过程不明确,且模型对于不同机组的泛化能力较差。最后,对于软测量技术在碳排放计量领域的发展应用进行了总结与展望。对电厂各参数之间的时序结构、电厂自身计算能力的限制以及机理分析融合数据驱动方法的发展提出相关建议,并对国外二氧化碳预测性排放系统结合软测量技术在国内外燃煤电厂的应用进行展望。展开更多
文摘碳排放连续在线监测法作为一种高效、可溯源的方法,在我国碳计量领域中逐渐应用。然而,由于烟囱管道的大直径、复杂烟气流场,以及流量计检修维护、粉尘堵塞导致的监测数据中断与异常,烟气流量的准确监测成为一大挑战。为此,提出一种融合变量投影重要性分析(variable importance in projection,VIP)、最大信息系数(maximal information coefficient,MIC)及后向搜索(sequential backward selection,SBS)算法的联合筛选方法,结合支持向量机(support vector machine,SVM)构建烟气流量软测量模型。基于某F级燃气-蒸汽联合循环发电机组,通过VIP值评估辅助变量显著性,并结合MIC和SBS算法,进行变量冗余消除与优化选择,从而提升模型的预测精度和泛化能力。实验结果显示:SVM的表现优于长短时间记忆网络模型,与反向传播神经网络相比具有较好的泛化能力;当辅助变量数量为12时,模型性能最佳,测试集的均方根误差和平均绝对百分比误差均较低,验证了变量筛选方法的有效性;在稳态和非稳态工况下,模型预测值的平均绝对百分比误差小于0.7%,并有一定的滤波作用。
文摘火力发电企业作为我国能源结构的重要组成部分,长期以来是我国碳排放的主要来源,在我国和全球加速推动低碳经济发展的宏观环境下,火电企业积极响应国家“能耗双控”向“碳排放双控”转变的战略部署。在此背景下,精确计量燃煤电厂的碳排放量变得至关重要。在燃煤电厂碳计量中,烟气流量影响燃煤发电中在线监测法的精度,而燃煤消耗量、燃煤元素碳含量以及飞灰碳含量共同决定核算法的可靠性。目前,大多数燃煤发电企业只对流量和燃煤消耗量进行实时监测,在现场恶劣的环境中对燃煤元素碳含量以及飞灰碳含量进行短周期、高频次的直接监测需要花费较大的人力以及物力,流量监测设备也易受烟道环境影响。而软测量技术以其高效和低成本的特点,可为传统碳排放计量过程中关键参数的监测提供一种替代方法。鉴于此,首先阐述了软测量模型的建立过程,包含数据预处理、辅助变量选择、软测量模型建立以及模型校正。数据预处理能够确保数据质量,提高建模效率;辅助变量选择是从大量潜在的变量中筛选出对目标变量的辅助变量,进一步提高建模效率;软测量模型建立主要是基于机理建模和数据驱动建模,是实现目标变量预测的核心;模型校正通过实际的离线或在线数据,对模型进行进一步优化,提高模型的预测精度。其次,针对碳计量相关参数,分析了烟气流量、燃煤消耗量、燃煤元素碳含量和飞灰碳含量监测存在的问题,论述了软测量技术在上述碳计量关键参数的国内外研究进展和应用,评估了机理建模和数据驱动建模技术的有效性、准确性和实用性。其中,机理分析建模主要基于电厂锅炉进出口的能量平衡以及烟风质量守恒等原理,有着确定的数学物理关系式,具有高度可解释性和稳定性,但是建模过程复杂,预测精度较低;数据驱动建模主要是利用各种机器学习方法,基于电厂分布式控制系统(Distributed control system,DCS)丰富的运行数据,对碳计量关键参数进行“黑箱建模”,克服了机理分析建模复杂的过程分析,精度相对较高,但是建模过程不明确,且模型对于不同机组的泛化能力较差。最后,对于软测量技术在碳排放计量领域的发展应用进行了总结与展望。对电厂各参数之间的时序结构、电厂自身计算能力的限制以及机理分析融合数据驱动方法的发展提出相关建议,并对国外二氧化碳预测性排放系统结合软测量技术在国内外燃煤电厂的应用进行展望。