为了宏观掌握智慧果园在国内外的研究动态、前沿和热点,更好地推动智慧果园乃至智慧农业的发展,该研究采用文献计量分析方法,以Web of science核心论文集为检索平台分析了智慧果园2002年1月1日—2022年8月累计20年的时空分布、主要研究...为了宏观掌握智慧果园在国内外的研究动态、前沿和热点,更好地推动智慧果园乃至智慧农业的发展,该研究采用文献计量分析方法,以Web of science核心论文集为检索平台分析了智慧果园2002年1月1日—2022年8月累计20年的时空分布、主要研究内容以及前沿热点。主要结论如下:智慧果园的研究自2014年起步入正轨,2018年起在人工智能技术推动下发展迅猛,2018-2021年总发文量占比37.5%;总体而言,作者(Lan Yubin、Chen Chao、Tang Yu等)、机构(华南农业大学、中国农业大学和佛罗里达大学等)、地域(中国、美国、西班牙等国)交流和合作均较为密切;中国、美国是开展智慧果园研究的主要国家,总发文量共占比58.2%;当前主要研究集中在果树长势和病虫害识别和预警、无人化或智能化农机作业。根据研究目的细分的技术主要包含人工智能模型/算法、传感、物联和精准农业等。自2007年以来,研究热点由柑橘病害、产量预估等对象研究逐步过渡到技术研究上,深度学习、无人机、人工智能的研究是当今智慧果园的发展前沿。智慧果园研究深受技术推动尤其在当前人工智能技术背景下方兴未艾,而当前的环境复杂度高、种植欠规范等问题依旧制约着其进一步发展。星-空-地立体化果园感知、空-地协同无人化精准作业、水果采摘、果品的可视化溯源等方面将是未来智慧果园主要研究方向。展开更多
小白菜是中国种植面积较广、深受大众喜爱的蔬菜,真实菜地环境中虫害往往出现在叶片的特定区域,且受环境因素如光照和背景干扰较大,影响对其的智能检测。为提高小白菜虫害的检测效率和准确率,该研究提出一种基于YOLOv5s网络框架改进的YO...小白菜是中国种植面积较广、深受大众喜爱的蔬菜,真实菜地环境中虫害往往出现在叶片的特定区域,且受环境因素如光照和背景干扰较大,影响对其的智能检测。为提高小白菜虫害的检测效率和准确率,该研究提出一种基于YOLOv5s网络框架改进的YOLOPC(YOLO for Pak Choi)小白菜虫害识别模型。首先,引入CBAM(convolutional block attention module)注意力机制,将其放在CBS(卷积层Convolution+归一化层Batch normalization+激活函数层SILU)的输入端构成CBAM-CBS的结构,动态调整特征图中各个通道和空间位置的权重;使用上采样和1×1卷积操作来调整特征图的尺寸和通道数,实现不同层次特征的融合,增强模型的特征表示能力。同时,改进损失函数,使其更适合边界框回归的准确性需求;利用空洞卷积的优势提高网络的感受野范围,使模型能够更好地理解图像的上下文信息。试验结果表明,与改进前的YOLOv5s模型相比,YOLOPC模型对小白菜小菜蛾和潜叶蝇虫害检测的平均精度均值(mean average precision, mAP)达到91.4%,提高了12.9%;每秒传输帧数(Frame Per Second, FPS)为58.82帧/s,增加了11.2帧/s,增加幅度达23.53%;参数量仅为14.4 M,降低了25.78%。与经典的目标检测算法SSD、Faster R-CNN、YOLOv3、YOLOv7和YOLOv8相比,YOLOPC模型的平均精度均值分别高出20.1%、24.6%、14%、13.4%和13.3%,此外,其准确率、召回率、帧速率和参数量均展现出显著优势。该模型可为复杂背景下小白菜虫害的快速准确检测提供技术支持。展开更多
文摘小白菜是中国种植面积较广、深受大众喜爱的蔬菜,真实菜地环境中虫害往往出现在叶片的特定区域,且受环境因素如光照和背景干扰较大,影响对其的智能检测。为提高小白菜虫害的检测效率和准确率,该研究提出一种基于YOLOv5s网络框架改进的YOLOPC(YOLO for Pak Choi)小白菜虫害识别模型。首先,引入CBAM(convolutional block attention module)注意力机制,将其放在CBS(卷积层Convolution+归一化层Batch normalization+激活函数层SILU)的输入端构成CBAM-CBS的结构,动态调整特征图中各个通道和空间位置的权重;使用上采样和1×1卷积操作来调整特征图的尺寸和通道数,实现不同层次特征的融合,增强模型的特征表示能力。同时,改进损失函数,使其更适合边界框回归的准确性需求;利用空洞卷积的优势提高网络的感受野范围,使模型能够更好地理解图像的上下文信息。试验结果表明,与改进前的YOLOv5s模型相比,YOLOPC模型对小白菜小菜蛾和潜叶蝇虫害检测的平均精度均值(mean average precision, mAP)达到91.4%,提高了12.9%;每秒传输帧数(Frame Per Second, FPS)为58.82帧/s,增加了11.2帧/s,增加幅度达23.53%;参数量仅为14.4 M,降低了25.78%。与经典的目标检测算法SSD、Faster R-CNN、YOLOv3、YOLOv7和YOLOv8相比,YOLOPC模型的平均精度均值分别高出20.1%、24.6%、14%、13.4%和13.3%,此外,其准确率、召回率、帧速率和参数量均展现出显著优势。该模型可为复杂背景下小白菜虫害的快速准确检测提供技术支持。