期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
联合COMET与条件变分自编码的共情对话
1
作者 李土超 《计算机应用与软件》 北大核心 2025年第8期374-381,共8页
在常见共情对话(Empathetic Dialogue)生成中,普遍存在的一个问题是,对话模型偏向于生成通用的回答,如“我不知道”等在语料中常见但是没有意义的回复,这种通用性的响应能回复任何的对话上文。为了缓解这个问题,在解码器中使用了条件变... 在常见共情对话(Empathetic Dialogue)生成中,普遍存在的一个问题是,对话模型偏向于生成通用的回答,如“我不知道”等在语料中常见但是没有意义的回复,这种通用性的响应能回复任何的对话上文。为了缓解这个问题,在解码器中使用了条件变分自编码框架,以期望生成的语句带有文本多样性;为了更好地理解说话者的情感和语义,在编码器的模块中,使用常识推理生成模块COMET与情感字典来增强对话中的语义信息和情感信息。于是,联合使用COMET的编码器与变分的解码器提出VT-CEM模型。在EmpatheticDialogues数据集上经过实验验证,相对于多个基线,VT-CEM模型可以产生更高的流畅度和更丰富的文本多样性。 展开更多
关键词 共情对话 常识推理 条件变分自编码
在线阅读 下载PDF
融合信息熵与信任机制的防攻击推荐算法研究 被引量:4
2
作者 郝志峰 牛晓龙 +1 位作者 蔡瑞初 温雯 《计算机应用与软件》 CSCD 2015年第3期284-288,共5页
由于对用户偏好信息的过分依赖,致使推荐系统易受到恶意攻击,从而影响系统的推荐质量。提出一个融合信息熵与信任机制的防攻击推荐算法。在考虑了托攻击与正常用户之间的评分变化幅度差异基础上,提出融合信息熵的相似性改进算法,同时引... 由于对用户偏好信息的过分依赖,致使推荐系统易受到恶意攻击,从而影响系统的推荐质量。提出一个融合信息熵与信任机制的防攻击推荐算法。在考虑了托攻击与正常用户之间的评分变化幅度差异基础上,提出融合信息熵的相似性改进算法,同时引入信任更新机制,在推荐过程中将用户间信任度与相似度有机相结合,通过筛选推荐权重较高的邻居用户方法获得可靠推荐,从而降低恶意攻击对系统的影响。通过在真实数据集上实验表明该算法在提高推荐系统的准确性和脆弱性上有较好的表现。 展开更多
关键词 协同过滤 恶意攻击 评分变化幅度 复合权重 脆弱性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部