期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于隐马尔可夫模型的股票价格预测组合模型 被引量:10
1
作者 朱嘉瑜 叶海燕 高鹰 《计算机工程与设计》 CSCD 北大核心 2009年第21期4945-4948,共4页
提出了一种用于股票价格预测的人工神经网络(ANN),隐马尔可夫模型(HMM)和粒子群优化算法(PSO)的组合模型-APHMM模型。在APHMM模型中,ANN算法将股票的每日开盘价、最高价、最低价与收盘价转换为相互独立的量并作为HMM的输入。然后,利用PS... 提出了一种用于股票价格预测的人工神经网络(ANN),隐马尔可夫模型(HMM)和粒子群优化算法(PSO)的组合模型-APHMM模型。在APHMM模型中,ANN算法将股票的每日开盘价、最高价、最低价与收盘价转换为相互独立的量并作为HMM的输入。然后,利用PSO算法对HMM的参数初始值进行优化,并用Baum-Welch算法进行参数训练。经过训练后的HMM在历史数据中找出一组与今天股票的上述4个指标模式最相似数据,加权平均计算每个数据与它后一天的收盘价格差,则今天的股票收盘价加上这个加权平均价格差便为预测的股票收盘价。实验结果表明,APHMM模型具有良好的预测性能。 展开更多
关键词 股票价格预测 隐马尔可夫模型 隐马尔可夫模型优化 粒子群优化算法 人工神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部