期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于GWO-GRU的光伏发电功率预测
1
作者 陈庆明 廖鸿飞 +1 位作者 孙颖楷 曾亚森 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期438-444,共7页
针对长短期记忆网络(LSTM)应用于光伏发电功率预测时存在的耗时长或精准度低的问题,提出基于灰狼算法(GWO)优化门控循环单元(GRU)的光伏发电功率预测模型。通过GWO算法优化GRU模型的超参数,以近似最优参数建立光伏发电功率预测模型。结... 针对长短期记忆网络(LSTM)应用于光伏发电功率预测时存在的耗时长或精准度低的问题,提出基于灰狼算法(GWO)优化门控循环单元(GRU)的光伏发电功率预测模型。通过GWO算法优化GRU模型的超参数,以近似最优参数建立光伏发电功率预测模型。结果表明,长时功率预测时,GWO-GRU模型的均方根误差更低、拟合系数更高、耗时更少,比传统LSTM模型的平均绝对误差降低10.20%;短时功率预测时,GWO-GRU模型在3种典型天气条件下不仅预测的平均误差最低、稳定性最强,而且比GWO-LSTM模型的平均用时节省17.24%。不同时长的功率预测表明,GWO-GRU相对于LSTM光伏功率预测效果更佳。 展开更多
关键词 光伏发电 功率预测 门控循环单元 灰狼算法 长短期记忆网络 时间序列
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部