期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习优化YOLOV3算法的芳纶带检测算法研究 被引量:4
1
作者 杨建伟 涂兴子 +2 位作者 梅峰漳 李亚宁 范鑫杰 《中国矿业》 北大核心 2020年第4期67-72,共6页
矿用芳纶带传送设备在长期运输过程中会产生划伤、砸伤等损伤。芳纶带表面缺陷需要及时的检测,而传统机器视觉检测精度低、受背景干扰比较大、漏检率和误检率较高,因此,本文提出运用深度学习神经网络检测,查看一次统一的实时对象检测(yo... 矿用芳纶带传送设备在长期运输过程中会产生划伤、砸伤等损伤。芳纶带表面缺陷需要及时的检测,而传统机器视觉检测精度低、受背景干扰比较大、漏检率和误检率较高,因此,本文提出运用深度学习神经网络检测,查看一次统一的实时对象检测(you only look once unified real-time object detection,YOLO)。在现场的测试中,YOLOV3算法对小目标的识别精度比较低,敏感度不够,本文优化了YOLOV3算法,网络信息的传输过程,由ResNet(残差网络)替换为特征表述更为完整的DenseNet(密集连接网络),同时运用了卷积降维进行优化,减少检测时间。在现场经过比对,优化后的YOLOV3算法相较于通过频域变换和Otsu算法,检测精度提高了26%,对比没有优化的YOLOV3算法,检测精度提高了15%,通过在现场的实验,该方法有效地改善了对于芳纶带小目标的瑕疵检测。 展开更多
关键词 表面缺陷 YOLOV3算法 密集连接网络(DenseNet) 卷积降维
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部