期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络建立中药材自动识别的人工智能模型及应用程序 被引量:3
1
作者 王甘红 张子豪 +3 位作者 奚美娟 夏开建 周燕婷 陈健 《中国全科医学》 北大核心 2025年第9期1128-1136,共9页
背景传统中药材检测手段依赖主观经验,难以满足中药材在准确分类与鉴别方面的需求。目的基于卷积神经网络(CNN)开发一款能够自动识别163种中药材的人工智能模型及电脑端应用程序。方法2020年1月—2024年6月,采集了两个中药材数据集进行... 背景传统中药材检测手段依赖主观经验,难以满足中药材在准确分类与鉴别方面的需求。目的基于卷积神经网络(CNN)开发一款能够自动识别163种中药材的人工智能模型及电脑端应用程序。方法2020年1月—2024年6月,采集了两个中药材数据集进行深度学习模型的训练、验证和测试,共包含163种中药材。通过准确率、灵敏度、特异度、精确率、受试者工作特征(ROC)曲线下面积(AUC)、F1分数等指标来衡量CNN模型的性能。在模型训练完成后,基于PyQt5技术开发了一款应用程序,供临床便携使用。结果本研究共纳入了276767张图像,开发了EfficientNetB0、ResNet50、MobileNetV3、VGG19和ResNet185种模型,通过性能比较,EfficientNet_B0模型在验证集上取得了最高的准确率(99.0%)和AUC(0.9942),被选为最佳模型。在测试集上,最佳模型对所有中药类别识别的准确率为99.0%、灵敏度为99.0%、特异度为100.0%、AUC为1.0,展现出良好的性能。结论基于卷积神经网络开发的深度学习模型能够快速准确地识别163种中药材,借助其高灵敏度的识别能力,为医师对中药材的鉴别提供有力辅助。 展开更多
关键词 中药材 模式识别 自动 中药药材学 应用程序 人工智能 PyQt5 卷积神经网络
在线阅读 下载PDF
基于自动化机器学习构建胆总管结石自发排石预测模型及应用程序
2
作者 陈健 夏开建 +3 位作者 高福利 刘罗杰 王甘红 徐晓丹 《临床肝胆病杂志》 北大核心 2025年第3期518-527,共10页
目的鉴于胆总管结石患者治疗决策的复杂性,本研究利用自动化机器学习算法,开发一款能够预测胆总管结石患者自发排石的预测模型及应用程序,从而减少非必要内镜逆行胰胆管造影(ERCP)。方法回顾性收集2022年1月—2024年6月通过影像学手段... 目的鉴于胆总管结石患者治疗决策的复杂性,本研究利用自动化机器学习算法,开发一款能够预测胆总管结石患者自发排石的预测模型及应用程序,从而减少非必要内镜逆行胰胆管造影(ERCP)。方法回顾性收集2022年1月—2024年6月通过影像学手段明确诊断胆总管结石后拟行ERCP取石的患者数据,数据来自常熟市第一人民医院(数据集1)和常熟市中医院(数据集2),共835例。数据集1用于机器学习模型训练、内部验证和开发应用程序,数据集2用于外部测试。纳入22个潜在预测变量,用于构建和内部验证LASSO回归模型及自动化机器学习模型。通过受试者操作特征曲线下面积(AUC)、敏感度、特异度、准确率等评估模型性能,选取最佳模型。使用特征重要性图、力图和SHAP图对模型进行解释。利用Python Dash库和最佳模型构建Web应用程序,在数据集2上进行外部测试。使用Kolmogorov-Smirnov检验确定数据是否符合正态分布;对于不符合正态分布的连续变量,使用Mann-Whitney U检验进行2组间比较;分类变量通过χ^(2)检验或Fisher精确检验来分析组间差异。结果纳入835例患者中,152例(18.20%)出现自发排石。在训练集(n=588)和验证集(n=171)中,LASSO模型的AUC分别为0.875、0.864,重要性排名前5的预测因素为单发胆总管结石、胆总管不扩张、胆总管结石直径、血清ALP降低和GGT降低。通过自动化机器学习构建了55个模型,其中梯度提升机(GBM)表现最佳,其AUC为0.891,95%CI为0.859~0.927,优于极端随机树(XRT)、深度学习(DL)、广义线性模型(GLM)和分布式随机森林(DRF)模型。在测试集(n=76)中,GBM模型的预测准确率、敏感度和特异度分别为0.855、0.846和0.857。变量重要性分析显示,单发胆总管结石、胆总管不扩张、胆总管结石直径<8 mm、血清ALP降低和GGT降低这5个因素对预测自发排石具有重要影响。基于GBM模型的SHAP图分析显示,当患者出现单发胆总管结石、胆总管不扩张、胆总管结石直径<8 mm、血清ALP及GGT降低时,出现自发性排石的概率明显增加。结论基于自动化机器学习算法构建的GBM模型及应用程序,在预测胆总管结石患者自发排石方面展现出良好的预测性能和使用便捷性。该应用程序能够帮助避免非必要的ERCP,从而降低手术风险和医保支出。 展开更多
关键词 胆总管结石病 胰胆管造影术 内窥镜逆行 机器学习 预测模型
在线阅读 下载PDF
基于深度学习的结直肠息肉内镜图像分割和分类方法比较 被引量:5
3
作者 陈健 王珍妮 +3 位作者 夏开建 王甘红 刘罗杰 徐晓丹 《上海交通大学学报(医学版)》 CAS CSCD 北大核心 2024年第6期762-772,共11页
目的·比较不同深度学习方法在结直肠息肉内镜图像分割和分类任务中的性能,以确定最优方法。方法·从3家医院采集4个结肠息肉数据集,涵盖1534个静态图像及15个肠镜视频。所有样本均经病理学验证,分为锯齿状病变和腺瘤性息肉2类... 目的·比较不同深度学习方法在结直肠息肉内镜图像分割和分类任务中的性能,以确定最优方法。方法·从3家医院采集4个结肠息肉数据集,涵盖1534个静态图像及15个肠镜视频。所有样本均经病理学验证,分为锯齿状病变和腺瘤性息肉2类。使用LabelMe工具进行多边形标注,将标注结果转换为整数掩膜格式。数据用于训练不同架构的深度神经网络,包括卷积神经网络、Transformer以及这2种技术的融合,建立有效的语义分割模型。对比不同架构模型自动诊断结肠息肉的多项性能指标,包括平均交并比(mIoU)、整体准确率(aAcc)、平均准确率(mAcc)、平均Dice系数(mDice)、平均F分数(mFscore)、平均精确率(mPrecision)和平均召回率(mRecall)。结果·开发了4种不同架构的语义分割模型,包括2种深度卷积神经网络架构(Fast-SCNN和DeepLabV3plus)、1种Transformer架构(Segformer)以及1种混合架构(KNet)。在对291张测试图像进行综合性能评估中,KNet最高mIoU为84.59%,显著优于Fast-SCNN(75.32%)、DeepLabV3plus(78.63%)和Segformer(80.17%)。在“背景”“锯齿状病变”和“腺瘤性息肉”3个类别上,KNet的交并比(IoU)分别为98.91%、74.12%和80.73%,均超越其他模型。KNet在关键性能指标上也表现优异,其中aAcc、mAcc、mDice、mFscore和mRecall分别达到98.59%、91.24%、91.31%、91.31%和91.24%,均优于其他模型。尽管在mPrecision上,91.46%并非最突出,但KNet的整体性能仍领先。在80张外部测试图像的推理测试中,KNet保持了81.53%的mIoU,展现出良好的泛化能力。结论·利用基于KNet混合架构的深度神经网络构建的结直肠息肉内镜图像语义分割模型表现出优异的预测性能,具有成为检测结直肠息肉高效工具的潜力。 展开更多
关键词 深度学习 结直肠息肉 卷积神经网络 TRANSFORMER 图像分割
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部