期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合注意力机制与改进ResNet50的服装图像属性预测方法
1
作者 游小荣 李淑芳 邵红燕 《现代纺织技术》 北大核心 2025年第1期58-64,共7页
为了解决人工标注服装图像属性效率低下的问题,提出了一种融合注意力机制与改进ResNet50的服装图像属性预测方法。首先对传统多标签分类方法中的模型进行了改进,改进后的方法能更充分利用任务之间的相关性,并减少数据稀缺问题带来的影响... 为了解决人工标注服装图像属性效率低下的问题,提出了一种融合注意力机制与改进ResNet50的服装图像属性预测方法。首先对传统多标签分类方法中的模型进行了改进,改进后的方法能更充分利用任务之间的相关性,并减少数据稀缺问题带来的影响;接着引入CBAM注意力机制,用于捕捉服装属性上的细节特征。结果表明:在未引入注意力机制的情况下,基于改进ResNet50的方法在多项评价指标上均优于传统多标签分类方法,准确率提高了25.96%;与ResNet34、EfficientNet_V2、VGG16模型相比,ResNet50模型在服装图像属性预测方面整体表现更佳;引入CBAM注意力机制后,基于改进ResNet50的方法的准确率再提高了1.72%。所提的融合注意力机制与改进ResNet50的服装图像属性预测方法,能够有效预测服装图像属性,为实现服装图像属性的自动化标注提供了新的思路。 展开更多
关键词 服装图像 属性预测 注意力机制 ResNet50 深度学习
在线阅读 下载PDF
融合迁移学习和集成学习的服装风格图像分类方法
2
作者 游小荣 李淑芳 《现代纺织技术》 北大核心 2024年第9期127-134,共8页
针对服装风格人工分类受主观性、地域等因素影响而造成的分类错误问题,研究了一种基于人工智能的服装风格图像分类方法。首先,在FashionStyle14数据集基础上筛除重复或无效图像,构建服装风格图像数据集;然后,采用迁移学习方法,对Efficie... 针对服装风格人工分类受主观性、地域等因素影响而造成的分类错误问题,研究了一种基于人工智能的服装风格图像分类方法。首先,在FashionStyle14数据集基础上筛除重复或无效图像,构建服装风格图像数据集;然后,采用迁移学习方法,对EfficientNet V2、RegNet Y 16GF和ViT Large 16等模型进行微调训练,生成新模型,实现基于单个深度学习的服装风格图像分类;最后,为进一步提高图像分类的准确性、可靠性和鲁棒性,分别采用基于投票、加权平均和堆叠的集成学习方法对上述单个模型进行组合预测。迁移学习实验结果表明,基于ViT Large 16的深度学习模型在测试集上表现最佳,平均准确率为77.024%;集成学习方法实验结果显示,基于投票的集成学习方法在相同测试集上平均准确率可达78.833%。研究结果为解决服装风格分类问题提供了新的思路。 展开更多
关键词 服装风格 迁移学习 集成学习 ViT模型 图像分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部