上下文感知是近几年来研究的热点,主要采用机器学习的算法来进行推理。原始的LLE(Locally linear embedding)算法只能对单个流形进行采样处理,但是不能处理多流形的情况,不能得到正确的邻域。针对这一点对LLE算法进行改进,得到PLLE算法(...上下文感知是近几年来研究的热点,主要采用机器学习的算法来进行推理。原始的LLE(Locally linear embedding)算法只能对单个流形进行采样处理,但是不能处理多流形的情况,不能得到正确的邻域。针对这一点对LLE算法进行改进,得到PLLE算法(Probabilistic LLE),并将改进的算法用UCI数据集进行验证。通过实验证明,该方法的分类效果较LLE算法、ISOMAP算法、PCA算法和KNN算法在一定的数据集上要好一些;最后将PLLE算法运用的上下文感知中,可以发现,PLLE算法能够得出较完整的上下文信息,比LLE算法要好。展开更多
ISOMAP算法成功应用的潜在条件是要求数据集均匀抽样于单个的内在流形。如果数据集均匀采样于某个内在流形,但内部出现了一个间隔,ISOMAP算法可能失效。提出了G-ISOMAP(ISOMAP with a Gap)算法,该算法充分利用了数据集中的间隔特性。首...ISOMAP算法成功应用的潜在条件是要求数据集均匀抽样于单个的内在流形。如果数据集均匀采样于某个内在流形,但内部出现了一个间隔,ISOMAP算法可能失效。提出了G-ISOMAP(ISOMAP with a Gap)算法,该算法充分利用了数据集中的间隔特性。首先检测被间隔的子流形间最短欧氏距离对应的数据点,然后将这些数据点互相设置为邻域点,最后用ISOMAP算法找到低维嵌入结果。对G-ISOMAP与ISOMAP算法的区别与联系进行了详细的理论说明,得出ISOMAP算法是G-ISOMAP算法的一个特例,G-ISOMAP算法是ISOMAP算法扩充的结论。实验结果验证了该算法比其他常用的流形学习算法在有间隔的数据集上更有效。展开更多
文摘上下文感知是近几年来研究的热点,主要采用机器学习的算法来进行推理。原始的LLE(Locally linear embedding)算法只能对单个流形进行采样处理,但是不能处理多流形的情况,不能得到正确的邻域。针对这一点对LLE算法进行改进,得到PLLE算法(Probabilistic LLE),并将改进的算法用UCI数据集进行验证。通过实验证明,该方法的分类效果较LLE算法、ISOMAP算法、PCA算法和KNN算法在一定的数据集上要好一些;最后将PLLE算法运用的上下文感知中,可以发现,PLLE算法能够得出较完整的上下文信息,比LLE算法要好。
文摘ISOMAP算法成功应用的潜在条件是要求数据集均匀抽样于单个的内在流形。如果数据集均匀采样于某个内在流形,但内部出现了一个间隔,ISOMAP算法可能失效。提出了G-ISOMAP(ISOMAP with a Gap)算法,该算法充分利用了数据集中的间隔特性。首先检测被间隔的子流形间最短欧氏距离对应的数据点,然后将这些数据点互相设置为邻域点,最后用ISOMAP算法找到低维嵌入结果。对G-ISOMAP与ISOMAP算法的区别与联系进行了详细的理论说明,得出ISOMAP算法是G-ISOMAP算法的一个特例,G-ISOMAP算法是ISOMAP算法扩充的结论。实验结果验证了该算法比其他常用的流形学习算法在有间隔的数据集上更有效。