期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于局部时序建模与Transformer的机器人运动技能学习
1
作者 朱晓庆 南博睿 +5 位作者 宫婉儒 毕兰越 郑忻宜 朱晓宇 吴通 张川 《北京理工大学学报》 北大核心 2025年第9期968-978,共11页
为了提高机器人运动技能学习的效率和精度,提出一种基于序列特征处理的动作决策Transformer模型,命名为门控机制Transformer(gated mechanism Transformer,GMT).模型以GPT-2为核心,结合门控机制提取隐藏状态特征,通过自回归建模捕捉时... 为了提高机器人运动技能学习的效率和精度,提出一种基于序列特征处理的动作决策Transformer模型,命名为门控机制Transformer(gated mechanism Transformer,GMT).模型以GPT-2为核心,结合门控机制提取隐藏状态特征,通过自回归建模捕捉时间依赖关系,解决机器人运动数据中深层特征难以提取的问题.同时,利用参数共享策略细化预测特征完成动作推理.GMT在MuJoCo平台的三个机器人运动技能任务中进行了验证.实验结果表明,GMT在学习效率和精度方面较Decision Transformer最高提升28.5%.研究表明,GMT能够高效建模机器人运动序列特征,为机器人动作决策提供新的技术方案. 展开更多
关键词 机器人运动 局部时序建模 TRANSFORMER 门控机制 自回归建模
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部