期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
半监督偏多标签特征选择
1
作者 武优 王静 +1 位作者 李培培 胡学钢 《计算机科学》 北大核心 2025年第4期161-168,共8页
多标签特征选择是一种有效的特征降维技术,旨在从原始特征空间中筛选出具有区分力的特征子集。然而,传统的多标签特征选择方法面临着标注精度下降的问题。在真实的数据中,实例被候选标签集标注,候选标签除相关标签外,还混杂着噪声标签,... 多标签特征选择是一种有效的特征降维技术,旨在从原始特征空间中筛选出具有区分力的特征子集。然而,传统的多标签特征选择方法面临着标注精度下降的问题。在真实的数据中,实例被候选标签集标注,候选标签除相关标签外,还混杂着噪声标签,即偏多标签数据。现有的多标签特征选择算法通常假设训练样本被精确标注,或者只考虑标签缺失的情况。并且,在现实情形中,大规模高维多标签数据集往往只有小部分数据被标注。因此,文中提出一种新颖的半监督偏多标签特征选择方法。首先,针对偏多标签问题,从已知标签的样本中学习标签之间的真实关系,然后利用流形正则化技术维持特征空间与标签空间的结构一致性。其次,针对标签缺失问题,通过标签传播算法来增强标签信息。另外,针对高维特征问题,对映射矩阵施加低秩约束,以揭示标签间的隐性联系,并通过引入l_(2,1)范数约束来选择具有较强区分能力的特征。实验结果表明,与现有的半监督多标签特征选择方法相比,所提方法在性能上存在显著的优势。 展开更多
关键词 多标签特征选择 偏多标签学习 半监督学习 特征降维 噪声标签
在线阅读 下载PDF
基于多域特征提取的多变量时间序列异常检测
2
作者 赵培 乔焰 +3 位作者 胡荣耀 袁新宇 李敏悦 张本初 《计算机应用》 CSCD 北大核心 2024年第11期3419-3426,共8页
多变量时间序列(MTS)数据具有高维性,且分布复杂多变,现有的异常检测模型在面对MTS数据集时普遍存在误判率高、训练困难等问题,且多数模型仅考虑时间序列样本的时空特征,对时间序列特征的学习并不全面。为了解决以上问题,提出一种基于... 多变量时间序列(MTS)数据具有高维性,且分布复杂多变,现有的异常检测模型在面对MTS数据集时普遍存在误判率高、训练困难等问题,且多数模型仅考虑时间序列样本的时空特征,对时间序列特征的学习并不全面。为了解决以上问题,提出一种基于多域特征提取的MTS异常检测模型(MFE-TS)。首先,从原始数据域出发,使用长短期记忆(LSTM)网络与卷积神经网络(CNN)分别提取MTS的时间相关性和空间相关性特征。其次,用傅里叶变换将原始时间序列转换到频域空间,并利用Transformer学习数据在频域空间的幅度与相位特征。多域特征学习能更全面地建模时间序列特征,从而提高模型对MTS的异常检测性能。此外,引入掩码策略,进一步增强模型的特征学习能力,并使模型具备一定的抗噪性。实验结果表明,MFE-TS在多个真实MTS数据集上展现了优越的性能,同时在含有噪声的数据集中仍能保持较好的检测效果。 展开更多
关键词 多变量时间序列 异常检测 无监督学习 多域特征提取
在线阅读 下载PDF
基于BN优化SNGAN的自适应音频隐写 被引量:3
3
作者 岳峰 朱慧 +1 位作者 苏兆品 张国富 《计算机学报》 EI CAS CSCD 北大核心 2022年第2期427-440,共14页
音频隐写术是将秘密信息(如文本、图像、音频、视频等)隐藏到载体音频中,不仅能够保证秘密信息本身的安全,而且能保证秘密信息传输的安全,已成为信息隐藏领域的研究热点之一.近年来,基于深度学习的音频隐写分析技术能够在充分挖掘隐写... 音频隐写术是将秘密信息(如文本、图像、音频、视频等)隐藏到载体音频中,不仅能够保证秘密信息本身的安全,而且能保证秘密信息传输的安全,已成为信息隐藏领域的研究热点之一.近年来,基于深度学习的音频隐写分析技术能够在充分挖掘隐写深度特征的基础上实现高效的隐写检测,导致隐写术的安全性降低,为隐写术带来了新的挑战.不过,生成对抗网络(Generative Adversarial Networks,GAN)的迅速发展,为音频隐写提供了一个新的解决思路.但是,现有基于GAN的音频隐写在隐藏容量、不可感知性、抗检测性上很难达到均衡,不能满足实际应用需求.为此,本文在网络结构单元上将批处理归一化与频谱归一化相结合,提出了一种基于优化频谱归一化GAN的自适应音频隐写方法(Batch Normalization optimized Spectral Normalization GAN,BNSNGAN).具体来说,首先设计了一种隐写编码器,基于时域补零法对秘密音频进行预处理,实现了任意长度秘密音频的嵌入,提高了音频隐写的不可感知性;其次设计了一种具有并行结构的隐写提取器,用不同的卷积核进行去卷积,提高了秘密信息提取的准确率;最后设计了一种以交叉熵为损失函数的隐写分析器,提高了音频隐写的抗检测性.对比实验结果表明,通过编码器、提取器和隐写分析器这三个网络的互相学习,本文所提BNSNGAN不仅可以实现任意长度秘密音频的嵌入,具有较高的秘密信息提取率,并且在隐写容量、不可感知性和抗检测性上可以达到一个较好的均衡. 展开更多
关键词 音频隐写 生成对抗网络 频谱归一化 批处理归一化 自适应隐写
在线阅读 下载PDF
项目管理中任务时间进度不确定性可视化 被引量:8
4
作者 路强 毛龙龙 +1 位作者 柴秉捷 谭剑波 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第6期1055-1064,共10页
项目管理中对任务时间进度不确定性的处理是至关重要的.针对现有项目管理软件不能直观地展现项目任务时间进度不确定性和人员协作的问题,提出使用不确定性字形结合时间线法表示任务时间进度不确定性的可视化方法.首先总结项目任务进度... 项目管理中对任务时间进度不确定性的处理是至关重要的.针对现有项目管理软件不能直观地展现项目任务时间进度不确定性和人员协作的问题,提出使用不确定性字形结合时间线法表示任务时间进度不确定性的可视化方法.首先总结项目任务进度不确定性特点,对影响项目进度的不确定性因素进行详细定义,建立项目进度不确定性模型;然后使用时间线法可视化项目整体流程,设计不确定性可视化字形隐喻任务时间进度不确定性,并为用户提供多种交互手段和多个视图帮助探索分析项目任务进度不确定性和人员协作情况,根据用户的色彩感知偏好提供多种配色方案.以软件开发项目管理为例,在Program Line可视化系统中验证了文中方法的有效性和实用性. 展开更多
关键词 项目管理 任务时间进度不确定性 项目进度不确定性模型 不确定性可视化
在线阅读 下载PDF
基于多特征融合和BiLSTM的语音隐写检测算法 被引量:1
5
作者 苏兆品 张羚 +1 位作者 张国富 岳峰 《电子学报》 EI CAS CSCD 北大核心 2023年第5期1300-1309,共10页
针对传统互联网低比特率编解码器(internet Low Bit Rate Codec,iLBC)语音隐写主要集中在线性频谱频率系数矢量量化、码本搜索矢量量化或增益量化的单个阶段,难以应对多阶段下的联合隐写检测等问题,提出一种基于多特征融合和双向长短时... 针对传统互联网低比特率编解码器(internet Low Bit Rate Codec,iLBC)语音隐写主要集中在线性频谱频率系数矢量量化、码本搜索矢量量化或增益量化的单个阶段,难以应对多阶段下的联合隐写检测等问题,提出一种基于多特征融合和双向长短时记忆(Bi-Directional Long Short-Term Memory,BiLSTM)网络的iLBC语音隐写检测算法.通过分析隐写对不同阶段参数带来的影响,提取线性频谱频率系数矢量量化、码本搜索矢量量化和增益量化过程中的多种隐写特征,并分别输入到相应的BiLSTM检测网络,最后将各检测网络的结果进行融合,得到最终隐写检测结果 .实验表明,所提算法可以实现多阶段下的联合隐写检测,而且在语音时长较短时,仍能取得优异的检测结果,平均检测准确率达到了90%以上. 展开更多
关键词 联合隐写检测 互联网低比特率编解码器 双向长短时记忆网络 隐写特征提取 多特征融合
在线阅读 下载PDF
基于特征值的无可信中心的秘密共享方案研究 被引量:1
6
作者 张艳硕 李文敬 +3 位作者 赵耿 王庆瑞 毕伟 杨涛 《电子与信息学报》 EI CSCD 北大核心 2018年第11期2752-2757,共6页
利用矩阵特征值的特性,该文提出新的无可信中心的秘密共享方案。该方案无需可信中心的参与,每个参与者提供相同的秘密份额(列向量),在黑盒子中协同产生各自的秘密份额,从而避免可信中心的权威欺骗。所有参与者提供的列向量组成一个可逆... 利用矩阵特征值的特性,该文提出新的无可信中心的秘密共享方案。该方案无需可信中心的参与,每个参与者提供相同的秘密份额(列向量),在黑盒子中协同产生各自的秘密份额,从而避免可信中心的权威欺骗。所有参与者提供的列向量组成一个可逆矩阵P,可逆矩阵P和对角矩阵生成一个矩阵M,并将该矩阵正交化的单位特征向量,作为子密钥分发给各参与者。由于同一个集合的参与者所对应的特征值是相同的,该方案可以有效地防止成员之间的恶意欺诈行为。分析结果表明,该方案是可行的、安全的。 展开更多
关键词 秘密共享 特征值 可信中心 黑盒子
在线阅读 下载PDF
道路交通趋势可视化中的多代表性轨迹聚类方法 被引量:1
7
作者 路强 杨贵冰 +2 位作者 檀俊滔 余烨 Xiaohui Yuan 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第7期1194-1202,共9页
车辆轨迹数据中蕴含城市交通和移动对象行为的宏观信息,从中可以挖掘出有价值的城市交通趋势和车辆行为模式等信息,分析轨迹数据对于指导智能交通管理有重大意义.针对车辆轨迹数据的无序性和现行方法缺少对于轨迹整体趋势有较为精确地... 车辆轨迹数据中蕴含城市交通和移动对象行为的宏观信息,从中可以挖掘出有价值的城市交通趋势和车辆行为模式等信息,分析轨迹数据对于指导智能交通管理有重大意义.针对车辆轨迹数据的无序性和现行方法缺少对于轨迹整体趋势有较为精确地描述的问题,提出一种基于密度的轨迹聚类方法.首先按照角度阈值与长度限制划分轨迹,然后通过新的对称距离函数衡量轨迹段之间的相似度,最后对于聚类结果生成相应的多代表性轨迹.对3个轨迹数据集的实验结果表明,该方法生成的多代表性轨迹能较好地描述聚类整体趋势,为交通运输管理系统提供参考. 展开更多
关键词 车辆轨迹 聚类 多代表性轨迹 交通趋势
在线阅读 下载PDF
体系结构动态变化的软件测试资源分配算法
8
作者 李磊 张国富 +1 位作者 苏兆品 岳峰 《计算机应用》 CSCD 北大核心 2023年第7期2261-2270,共10页
测试资源分配是软件测试中的一个核心问题。已有相关研究大都假设软件的体系结构是静态不变的,且几乎没有考虑成本约束。针对该问题,提出一种体系结构动态变化的软件测试资源分配算法。首先构建了一种体系结构动态变化的多阶段多目标多... 测试资源分配是软件测试中的一个核心问题。已有相关研究大都假设软件的体系结构是静态不变的,且几乎没有考虑成本约束。针对该问题,提出一种体系结构动态变化的软件测试资源分配算法。首先构建了一种体系结构动态变化的多阶段多目标多约束测试资源分配模型;然后基于参数重估计、广义差分进化,在算法中加入了种群重新初始化,该方法能减小算法搜索空间并提升算法性能;最后在算法中加入了一种新的修复处理机制,该机制能有效剔除算法产生的无效解。与归一化加权求和多目标差分进化(WNS-MODE)算法和基于第三代广义差分进化的动态测试资源分配(DTRA-GDE3)算法相比,所提算法获得的解集的容量值分别提高了约11.81倍和0.39倍。在覆盖值指标方面,所提算法完全覆盖了WNS-MODE算法,并且相对于DTRA-GDE3算法提高了81个百分点。在超体积值指标方面,所提算法分别提高了近6倍和9倍。实验结果表明,所提算法能够更好地适应软件体系结构的动态变化,可为软件产品的动态测试提供更多和更优的测试资源分配方案,并满足用户需求的动态变化。 展开更多
关键词 构件软件 测试资源分配 动态测试 多阶段 归一化
在线阅读 下载PDF
基于体素特征重组网络的三维物体识别
9
作者 路强 张春元 +2 位作者 陈超 余烨 YUAN Xiao-hui 《图学学报》 CSCD 北大核心 2019年第2期240-247,共8页
三维物体识别是计算机视觉领域近年来的研究热点,其在自动驾驶、医学影像处理等方面具有重要的应用前景。针对三维物体的体素表达形式,特征重组卷积神经网络VFRN使用了直接连接同一单元中不相邻的卷积层的短连接结构。网络通过独特的特... 三维物体识别是计算机视觉领域近年来的研究热点,其在自动驾驶、医学影像处理等方面具有重要的应用前景。针对三维物体的体素表达形式,特征重组卷积神经网络VFRN使用了直接连接同一单元中不相邻的卷积层的短连接结构。网络通过独特的特征重组方式,复用并融合多维特征,提高特征表达能力,以充分提取物体结构特征。同时,网络的短连接结构有利于梯度信息的传播,加之小卷积核和全局均值池化的使用,进一步提高了网络的泛化能力,降低了网络模型的参数量和训练难度。ModelNet数据集上的实验表明,VFRN克服了体素数据分辨率低和纹理缺失的问题,使用较少的参数取得了优于现有方法的识别准确率。 展开更多
关键词 物体识别 体素 卷积神经网络 特征重组 短连接
在线阅读 下载PDF
基于软件体系结构和广义差分进化的测试资源动态分配算法 被引量:4
10
作者 邵志胜 张国富 +1 位作者 苏兆品 李磊 《计算机应用》 CSCD 北大核心 2021年第12期3692-3701,共10页
测试资源分配是软件测试中的一个基础问题,然而已有研究大都针对并串联模块软件模型而鲜有涉及体系结构软件模型。为此,首先针对可靠性和错误数动态变化的测试环境,构建了一种基于体系结构的多阶段多目标测试资源分配模型。然后基于参... 测试资源分配是软件测试中的一个基础问题,然而已有研究大都针对并串联模块软件模型而鲜有涉及体系结构软件模型。为此,首先针对可靠性和错误数动态变化的测试环境,构建了一种基于体系结构的多阶段多目标测试资源分配模型。然后基于参数重估计、种群重新初始化、广义差分进化和归一化加权求和设计了一种面向动态可靠性和错误数的多阶段多目标测试资源分配算法。最后,在仿真实验中,与已有的归一化加权求和多目标差分进化(WNS-MODE)算法进行对比,所提算法在不同结构的体系结构软件模型实例上所获解集更优,容量值提高了约16倍,覆盖值提高了约84个百分点,超体积提高了约6倍。实验结果表明,所提算法能够更好地适应可靠性和错误数的动态变化,可为体系结构软件模型的动态测试提供更多和更优的测试资源分配方案。 展开更多
关键词 软件测试 测试资源分配 软件体系结构 动态测试 广义差分进化
在线阅读 下载PDF
遗传算法优化时间卷积网络的手机来源识别 被引量:5
11
作者 武钦芳 吴张倩 +1 位作者 苏兆品 张国富 《计算机工程与应用》 CSCD 北大核心 2022年第3期151-158,共8页
基于语音的手机来源识别已成为近年来多媒体取证领域中的一个研究热点。已有研究鲜有考虑环境背景噪声,难以满足司法领域实际应用场景的需求。提出一种遗传算法优化时间卷积网络的手机来源识别方法。基于对数域的Mel滤波器组系数特征,... 基于语音的手机来源识别已成为近年来多媒体取证领域中的一个研究热点。已有研究鲜有考虑环境背景噪声,难以满足司法领域实际应用场景的需求。提出一种遗传算法优化时间卷积网络的手机来源识别方法。基于对数域的Mel滤波器组系数特征,利用时间卷积网络进行深度语音特征学习,并利用线性判别分析提取低维深度特征,将低维深度特征输入到支持向量机中进行训练和识别。特别的,为了提高整体的识别性能,引入遗传算法,通过设计编码方式、适应度函数和遗传操作对时间卷积网络结构进行智能优化。对比实验结果表明,所提方法可对时间卷积网络结构进行自动设计,尽可能地发挥网络性能,从而进一步提升了识别准确率。 展开更多
关键词 手机来源识别 时间卷积网络 网络结构 遗传算法 智能优化
在线阅读 下载PDF
自然环境背景噪声下基于低维深度特征的手机来源识别 被引量:2
12
作者 苏兆品 吴张倩 +2 位作者 岳峰 武钦芳 张国富 《电子学报》 EI CAS CSCD 北大核心 2021年第4期637-646,共10页
基于语音的手机来源识别是近年来多媒体取证领域中的一个研究热点,但已有研究大都局限于纯净语音或人工背景噪声语音.本文以自然环境背景噪声下的手机语音为研究对象,提出一种基于低维深度特征的手机来源识别方法.首先提取对数域的Mel... 基于语音的手机来源识别是近年来多媒体取证领域中的一个研究热点,但已有研究大都局限于纯净语音或人工背景噪声语音.本文以自然环境背景噪声下的手机语音为研究对象,提出一种基于低维深度特征的手机来源识别方法.首先提取对数域的Mel滤波器组系数作为基本的声学特征,然后输入到时间卷积网络中进行训练,进一步提取能够表征语音设备的深度特征,并利用线性判别分析进行降维,去除高维深度特征中的冗余.最后,将得到的低维深度特征输入到支持向量机中进行分类和识别.在47种不同型号手机录制的37600条自然环境背景噪声语音样本库上的测试结果表明,本文所提方法在自然环境背景噪声下具有更优的识别性能,且对不同品牌、相同品牌不同型号、不同样本长度、不同数据集规模和不同采样率都具有很好的适应性. 展开更多
关键词 手机来源识别 自然环境背景噪声 低维深度特征 时间卷积网络 线性判别分析
在线阅读 下载PDF
Granger因果关系时空图推理的群体行为分析 被引量:2
13
作者 谢昭 李骏 +1 位作者 吴克伟 焦畅 《计算机学报》 EI CAS CSCD 北大核心 2023年第4期856-876,共21页
因果关系普遍存在于群体交互行为中,体现出主动体行为对被动体行为的有向影响.因果关系检测的难点在于交互双方的行为具有复杂的时间动态性.现有方法使用循环神经网络,来描述交互关系的时间变化特性,并使用时间注意力机制,来描述时间依... 因果关系普遍存在于群体交互行为中,体现出主动体行为对被动体行为的有向影响.因果关系检测的难点在于交互双方的行为具有复杂的时间动态性.现有方法使用循环神经网络,来描述交互关系的时间变化特性,并使用时间注意力机制,来描述时间依赖关系.上述方法忽视了对多人依赖关系的分析,难以区分交互双方中的主动行为者和被动行为者.本文设计了一种基于Granger因果关系的时空图推理模型,来学习交互双方的主动和被动关系.为了实现Granger因果关系检测,该模型对单个个体时序特征进行自回归建模,来描述行为对个体自己的依赖.该模型对两个个体时序特征进行相关回归建模,来描述行为对两个个体的依赖.该模型通过比较自回归误差和相关回归误差,当自回归误差明显大于相关回归误差,则说明相关个体改变了另一方个体的行为特征,从而检测出相关个体为主动个体,另一方为被动个体.相关回归模型考虑了多种时间延迟量的两个个体的时序特征序列,用于学习两个个体之间行为的时间延迟量.该时间延迟量用于将主动个体时间特征与被动个体时间特征进行对齐.时间对齐后的主动个体特征提供了被动个体的时间和空间上下文特征,并与被动个体特征进行通道级的融合.为了充分描述个体之间的外观模式,位置约束,因果关系的交互关系,该模型构建多尺度外观的因果图,并使用图推理学习融合上下文的个体特征和群体特征.本文对Granger因果关系检测进行消融分析,并说明时间延迟量,交互融合通道比例,多尺度图推理,能够有效改善个体特征、群体特征的描述能力.本文方法在Volleyball和Collective Activity数据集上优于现有群体行为识别方法.本文的可视化结果说明Granger因果关系可以捕获群体中关键的交互关系. 展开更多
关键词 群体行为识别 GRANGER因果关系 时间延迟依赖 时空上下文 图卷积推理
在线阅读 下载PDF
救灾物资高维多目标自适应分配问题建模与求解 被引量:1
14
作者 严华健 张国富 +1 位作者 苏兆品 刘扬 《计算机应用》 CSCD 北大核心 2020年第8期2410-2419,共10页
针对救灾物资分配中效率和公平性的均衡问题,提出一种基于二维整数编码的高维多目标自适应分配算法。首先构建了一个综合考虑应急响应总时间、灾民恐慌度、救灾物资未满足度、物资分配公平性、灾民损失、应急响应总成本的高维多目标优... 针对救灾物资分配中效率和公平性的均衡问题,提出一种基于二维整数编码的高维多目标自适应分配算法。首先构建了一个综合考虑应急响应总时间、灾民恐慌度、救灾物资未满足度、物资分配公平性、灾民损失、应急响应总成本的高维多目标优化模型,然后采用二维整数编码和自适应个体修正(AIR)解决潜在的应急资源冲突,最后引入移位密度估计和第二代强度帕累托进化算法(SPEA2)设计了一个救灾物资高维多目标分配算法。在仿真实验中,与带有编码修正机制的非支配排序差异演化算法(ERNS-DE)和基于贪心搜索的多目标遗传算法(GSMOGA)相比,所提算法在两种应急环境中的覆盖值分别提高了34.87%、100%和23.59%、100%,同时所提算法的超体积值也远远高于两种对比算法。实验结果表明,所提模型和算法可以让决策者根据实际应急需求选择应急方案,具有更好的灵活性和求解效率。 展开更多
关键词 救灾物资分配 高维多目标 进化算法 自适应策略 个体修正
在线阅读 下载PDF
实际噪声下基于时序卷积网络的手机来源识别 被引量:1
15
作者 吴张倩 苏兆品 +1 位作者 武钦芳 张国富 《计算机工程与科学》 CSCD 北大核心 2021年第8期1461-1469,共9页
针对实际环境噪声下的手机来源识别问题,提出一种基于线性判别分析和时序卷积网络的手机来源识别方法。首先,通过分析不同手机语音特征在实际环境噪声下的分类性能,基于带能量描述符、常数Q变换域和线性判别分析得到一种新的手机语音混... 针对实际环境噪声下的手机来源识别问题,提出一种基于线性判别分析和时序卷积网络的手机来源识别方法。首先,通过分析不同手机语音特征在实际环境噪声下的分类性能,基于带能量描述符、常数Q变换域和线性判别分析得到一种新的手机语音混合特征。然后,以此混合特征为输入,基于时序卷积网络进行训练和分类。最后,在10个品牌、47种手机型号、32900条语音样本的实际环境噪声语音库上的测试结果显示,所提方法的平均识别准确率达到99.82%。此外,与经典的基于带能量描述符和支持向量机的方法,以及基于常数Q变换域和卷积神经网络的方法相比,平均识别准确率分别提高了0.44和0.54个百分点,平均召回率分别提高了0.45和0.55个百分点,平均精确率分别提高了0.41和0.57个百分点,平均F1分数分别提高了0.49和0.55个百分点。实验结果表明,所提方法具有更优的综合识别性能。 展开更多
关键词 手机来源识别 实际环境噪声 混合特征 线性判别分析 时序卷积网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部