期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
Sentinel-2和GF-1影像结合提取苜蓿空间分布
被引量:
7
1
作者
包旭莹
王燕
+5 位作者
冯琦胜
葛静
侯蒙京
刘畅宇
高新华
梁天刚
《农业工程学报》
EI
CAS
CSCD
北大核心
2021年第16期153-160,共8页
及时准确地获取苜蓿空间分布信息有利于对草业生产发展和管理提供科学数据支撑。该研究基于GF-1/WFV和Sentinel-2遥感影像,以甘肃省金昌市作为研究区,构建了苜蓿的归一化植被指数(Normalized Difference Vegetation Index,NDVI)数据集,...
及时准确地获取苜蓿空间分布信息有利于对草业生产发展和管理提供科学数据支撑。该研究基于GF-1/WFV和Sentinel-2遥感影像,以甘肃省金昌市作为研究区,构建了苜蓿的归一化植被指数(Normalized Difference Vegetation Index,NDVI)数据集,并结合苜蓿光谱反射率随生育期的变化规律,提出一种利用MATLAB寻峰函数(Findpeaks)提取苜蓿遥感特征的方法,通过确定最小峰值突出(Minimum Peak Prominence,MPP)值实现金昌市苜蓿空间分布信息的提取。研究结果表明,基于Sentinel-2遥感数据的识别苜蓿精度优于GF-1/WFV,识别精度和Kappa系数在85%和0.7以上,主要是由于Sentinel-2数据的NDVI时间序列曲线密度较GF-1/WFV大,可以更好地识别苜蓿刈割前后的关键时间点;寻谷法的苜蓿提取总体精度、Kappa系数、用户精度、制图精度指标均比寻峰法高,基于Sentinel-2影像的寻谷法苜蓿遥感识别总体精度为92.25%,Kappa系数为0.81,位置精度为86.44%;2019年金昌市苜蓿空间分布整体呈现从北到南逐渐增多的趋势,统计得到苜蓿种植面积为15449.07 hm^(2),其中金川区的苜蓿面积为1353.42 hm^(2),占金昌市苜蓿总面积的8.76%;永昌县的苜蓿面积为14095.65 hm^(2),占总面积的91.24%。研究结果证实,基于Sentinel-2遥感数据的寻谷法可以有效识别苜蓿空间分布,对于实现草牧场精准化管理和草牧业生产信息精准监测具有重要意义。
展开更多
关键词
遥感
图像识别
时间序列
苜蓿
归一化植被指数NDVI
信息提取
在线阅读
下载PDF
职称材料
题名
Sentinel-2和GF-1影像结合提取苜蓿空间分布
被引量:
7
1
作者
包旭莹
王燕
冯琦胜
葛静
侯蒙京
刘畅宇
高新华
梁天刚
机构
兰州大学草地农业生态系统国家重点实验室/兰州大学农业农村部草牧业创新重点实验室/兰州大学草地农业教育部工程研究中心/兰州大学草地农业科技学院
崇信县第一中学
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2021年第16期153-160,共8页
基金
现代农业产业技术体系建设专项资金(CARS-34)
中国工程院重点咨询研究项目(2021-HZ-5,2020-XZ-29,2018-XZ-25)
+1 种基金
兰州大学中央高校基本科研业务费专项(lzujbky-2020-kb29)
长江学者和创新团队发展计划(IRT_17R50)。
文摘
及时准确地获取苜蓿空间分布信息有利于对草业生产发展和管理提供科学数据支撑。该研究基于GF-1/WFV和Sentinel-2遥感影像,以甘肃省金昌市作为研究区,构建了苜蓿的归一化植被指数(Normalized Difference Vegetation Index,NDVI)数据集,并结合苜蓿光谱反射率随生育期的变化规律,提出一种利用MATLAB寻峰函数(Findpeaks)提取苜蓿遥感特征的方法,通过确定最小峰值突出(Minimum Peak Prominence,MPP)值实现金昌市苜蓿空间分布信息的提取。研究结果表明,基于Sentinel-2遥感数据的识别苜蓿精度优于GF-1/WFV,识别精度和Kappa系数在85%和0.7以上,主要是由于Sentinel-2数据的NDVI时间序列曲线密度较GF-1/WFV大,可以更好地识别苜蓿刈割前后的关键时间点;寻谷法的苜蓿提取总体精度、Kappa系数、用户精度、制图精度指标均比寻峰法高,基于Sentinel-2影像的寻谷法苜蓿遥感识别总体精度为92.25%,Kappa系数为0.81,位置精度为86.44%;2019年金昌市苜蓿空间分布整体呈现从北到南逐渐增多的趋势,统计得到苜蓿种植面积为15449.07 hm^(2),其中金川区的苜蓿面积为1353.42 hm^(2),占金昌市苜蓿总面积的8.76%;永昌县的苜蓿面积为14095.65 hm^(2),占总面积的91.24%。研究结果证实,基于Sentinel-2遥感数据的寻谷法可以有效识别苜蓿空间分布,对于实现草牧场精准化管理和草牧业生产信息精准监测具有重要意义。
关键词
遥感
图像识别
时间序列
苜蓿
归一化植被指数NDVI
信息提取
Keywords
remote sensing
image recognition
time series
alfalfa
NDVI
information extraction
分类号
S127 [农业科学—农业基础科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
Sentinel-2和GF-1影像结合提取苜蓿空间分布
包旭莹
王燕
冯琦胜
葛静
侯蒙京
刘畅宇
高新华
梁天刚
《农业工程学报》
EI
CAS
CSCD
北大核心
2021
7
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部