标签噪声可能对监督学习模型的泛化能力产生较大影响.噪声过滤通过删减噪声样本来提升数据质量,是解决标签噪声问题的有效方法.然而,目前大多数标签噪声过滤算法会将一些潜在的有价值样本错误地标记为噪声,这种过度清洗会导致样本信息缺...标签噪声可能对监督学习模型的泛化能力产生较大影响.噪声过滤通过删减噪声样本来提升数据质量,是解决标签噪声问题的有效方法.然而,目前大多数标签噪声过滤算法会将一些潜在的有价值样本错误地标记为噪声,这种过度清洗会导致样本信息缺失.针对此问题,本文提出一种基于数据增强的联合标签清洗方法(Combined Label Cleaning Method based on Data Augmentation,CCDA),该方法通过多次在数据集上进行特征加噪增强、特征划分增强和组合增强,使用多次增强后预测结果的信息熵和一致性来评估样本的稳定性.将最不稳定的样本交由专家标注进行主动清洗修正标签值;将最稳定的样本利用模型预测的集成结果自动清洗.通过主动与自动方式联合实施针对性标签清洗,以较小的人工标记代价有效降低了标签噪声对模型性能的影响,提高了模型的泛化能力.实验结果表明,与所比较的方法相比,本文所提CCDA方法在不同噪声环境下都取得了更高的分类准确率,而且人工修正标记代价小.展开更多
提出基于卷积神经网络的单标签非接触式手势识别系统,在不需要携带任何设备的情况下,利用单标签、单天线实现精准的手势识别。首先,通过人为添加干扰物,读取受多径效应影响的标签相位信号;其次,对标签相位信号进行预处理,选取动态时间...提出基于卷积神经网络的单标签非接触式手势识别系统,在不需要携带任何设备的情况下,利用单标签、单天线实现精准的手势识别。首先,通过人为添加干扰物,读取受多径效应影响的标签相位信号;其次,对标签相位信号进行预处理,选取动态时间规整算法(dynamic time wrapping,DTW)匹配与先验指纹库粗粒度手势识别;最后,将标签相位信号利用马尔可夫变迁场(markov transition field,MTF)生成特征图像,利用IM-AlexNet模型进行深度训练和实验测评。实验结果表明,改进后的模型训练参数减少为初始的7%,且准确率达到96.76%.该系统可大范围扩展,并具有较高的鲁棒性。展开更多
文摘标签噪声可能对监督学习模型的泛化能力产生较大影响.噪声过滤通过删减噪声样本来提升数据质量,是解决标签噪声问题的有效方法.然而,目前大多数标签噪声过滤算法会将一些潜在的有价值样本错误地标记为噪声,这种过度清洗会导致样本信息缺失.针对此问题,本文提出一种基于数据增强的联合标签清洗方法(Combined Label Cleaning Method based on Data Augmentation,CCDA),该方法通过多次在数据集上进行特征加噪增强、特征划分增强和组合增强,使用多次增强后预测结果的信息熵和一致性来评估样本的稳定性.将最不稳定的样本交由专家标注进行主动清洗修正标签值;将最稳定的样本利用模型预测的集成结果自动清洗.通过主动与自动方式联合实施针对性标签清洗,以较小的人工标记代价有效降低了标签噪声对模型性能的影响,提高了模型的泛化能力.实验结果表明,与所比较的方法相比,本文所提CCDA方法在不同噪声环境下都取得了更高的分类准确率,而且人工修正标记代价小.
文摘提出基于卷积神经网络的单标签非接触式手势识别系统,在不需要携带任何设备的情况下,利用单标签、单天线实现精准的手势识别。首先,通过人为添加干扰物,读取受多径效应影响的标签相位信号;其次,对标签相位信号进行预处理,选取动态时间规整算法(dynamic time wrapping,DTW)匹配与先验指纹库粗粒度手势识别;最后,将标签相位信号利用马尔可夫变迁场(markov transition field,MTF)生成特征图像,利用IM-AlexNet模型进行深度训练和实验测评。实验结果表明,改进后的模型训练参数减少为初始的7%,且准确率达到96.76%.该系统可大范围扩展,并具有较高的鲁棒性。