期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于多感受野的生成对抗网络医学MRI影像超分辨率重建 被引量:4
1
作者 刘朋伟 高媛 +2 位作者 秦品乐 殷喆 王丽芳 《计算机应用》 CSCD 北大核心 2022年第3期938-945,共8页
针对医学磁共振成像(MRI)过程中由于噪声、成像技术和成像原理等干扰因素引起的图像细节丢失、纹理不清晰等问题,提出了基于多感受野的生成对抗网络医学MRI影像超分辨率重建算法。首先,利用多感受野特征提取块获取不同感受野下图像的全... 针对医学磁共振成像(MRI)过程中由于噪声、成像技术和成像原理等干扰因素引起的图像细节丢失、纹理不清晰等问题,提出了基于多感受野的生成对抗网络医学MRI影像超分辨率重建算法。首先,利用多感受野特征提取块获取不同感受野下图像的全局特征信息,为避免感受野过小或过大导致图像的细节纹理丢失,将每组特征分为两组,其中一组用于反馈不同尺度感受野下的全局特征信息,另一组用于丰富下一组特征的局部细节纹理信息;然后,使用多感受野特征提取块构建特征融合组,并在每个特征融合组中添加空间注意力模块,充分获取图像的空间特征信息,减少了浅层和局部特征在网络中的丢失,在图像的细节上取得了更逼真的还原度;其次,将低分辨率图像的梯度图转化为高分辨率图像的梯度图辅助重建超分辨率图像;最终将恢复后的梯度图集成到超分辨率分支中,为超分辨率重建提供结构先验信息,有助于生成高质量的超分辨率图像。实验结果表明,相比基于梯度引导的结构保留超分辨率算法(SPSR),所提算法在×2、×3、×4尺度下的峰值信噪比(PSNR)分别提升了4.8%、2.7%、3.5%,重建出的医学MRI影像纹理细节更加丰富、视觉效果更加逼真。 展开更多
关键词 超分辨率 多感受野 空洞卷积 空间注意力机制 梯度图
在线阅读 下载PDF
基于空洞卷积的医学图像超分辨率重建算法 被引量:4
2
作者 李众 王雅婧 马巧梅 《计算机应用》 CSCD 北大核心 2023年第9期2940-2947,共8页
为解决现有医学图像超分辨率重建中存在的图像细节模糊、全局信息利用不充分等问题,提出一种基于空洞卷积与改进的混合注意力机制的医学图像超分辨率重建算法。首先,将深度可分离卷积与空洞卷积相结合,使用不同大小的感受野对图像进行... 为解决现有医学图像超分辨率重建中存在的图像细节模糊、全局信息利用不充分等问题,提出一种基于空洞卷积与改进的混合注意力机制的医学图像超分辨率重建算法。首先,将深度可分离卷积与空洞卷积相结合,使用不同大小的感受野对图像进行不同尺度的特征提取,从而增强特征表达能力;其次,引入边缘通道注意力机制,在提取图像高频特征的同时融合边缘信息,从而提高模型的重建精度;再次,混合L1损失与感知损失函数作为整体损失函数,使重建后的图像效果更符合人类视觉感观。实验结果表明,在放大因子为3时,与基于卷积神经网络的图像超分辨率(SRCNN)算法、VDSR(Very Deep convolutional networks Super-Resolution)相比,所提算法的峰值信噪比(PSNR)平均提高了11.29%与7.85%;结构相似性(SSIM)平均提高了5.25%和2.44%。可见,所提算法能增强医学图像的效果与纹理特征,且对图像整体结构还原更加完整。 展开更多
关键词 超分辨率重建 医学图像 深度可分离卷积 空洞卷积 注意力机制
在线阅读 下载PDF
基于磁共振影像层间插值的超分辨率及多视角融合 被引量:2
3
作者 李萌 秦品乐 +1 位作者 曾建潮 李俊伯 《计算机应用》 CSCD 北大核心 2021年第11期3362-3367,共6页
针对磁共振(MR)图像切片内分辨率高而切片间分辨率低,导致MR在冠状面和矢状面上缺乏医学诊断意义的问题,提出了一种基于层间插值及多视角融合网络的医学图像处理算法。首先,引入了层间插值模块,用来将MR体数据沿冠状和矢状方向从三维数... 针对磁共振(MR)图像切片内分辨率高而切片间分辨率低,导致MR在冠状面和矢状面上缺乏医学诊断意义的问题,提出了一种基于层间插值及多视角融合网络的医学图像处理算法。首先,引入了层间插值模块,用来将MR体数据沿冠状和矢状方向从三维数据切割成二维图像;然后,在分别对冠状面和矢状面进行特征提取之后,通过空间矩阵滤波器动态计算权重用于任意大小的上采样因子放大图像;最后,将冠状图和矢状图在层间插值模块中得到的结果聚合成三维数据后再次沿轴状方向切割成二维图像,对得到的二维图像两两进行融合并通过轴状方向数据进行修正。实验结果表明,所提算法相较于其他超分辨率算法在×2、×3、×4尺度下的峰值信噪比(PSNR)均有1 dB左右的提升,可见所提算法有效提升了图像的重建质量。 展开更多
关键词 超分辨率 神经网络 层间插值 脑部磁共振影像 多视角融合
在线阅读 下载PDF
基于特征融合和动态多尺度空洞卷积的超声甲状腺分割网络 被引量:5
4
作者 胡屹杉 秦品乐 +2 位作者 曾建潮 柴锐 王丽芳 《计算机应用》 CSCD 北大核心 2021年第3期891-897,共7页
针对甲状腺超声影像中甲状腺组织大小和形态的多样性以及周边组织的复杂性,提出了一种基于特征融合和动态多尺度空洞卷积的超声甲状腺分割网络。首先,利用不同膨胀率的空洞卷积和动态滤波器来融合不同感受野下的全局语义特征与不同范围... 针对甲状腺超声影像中甲状腺组织大小和形态的多样性以及周边组织的复杂性,提出了一种基于特征融合和动态多尺度空洞卷积的超声甲状腺分割网络。首先,利用不同膨胀率的空洞卷积和动态滤波器来融合不同感受野下的全局语义特征与不同范围的上下文详情的语义特征,从而提升网络对多尺度目标的适应性与准确度;然后,在特征降维时采用混合上采样方式,以增强高维语义特征的空间信息和低维空间特征的上下文信息;最后,采用空间注意力机制来优化图像的低维特征,并采用高低维特征融合的方式使高低维特征信息在保留重要特征的同时摒弃冗余信息以及使网络对于图像前背景的区分能力得到增强。实验结果表明,所提方法在甲状腺超声影像公开数据集上达到了0.963±0.026的准确率、0.84±0.03的召回率和0.79±0.03的dice系数。可见所提方法能较好地解决组织形态差异性大以及周边组织复杂的问题。 展开更多
关键词 图像分割 注意力机制 空洞卷积 超声影像 特征融合
在线阅读 下载PDF
基于超分辨率网络的CT三维重建算法 被引量:4
5
作者 李俊伯 秦品乐 +1 位作者 曾建潮 李萌 《计算机应用》 CSCD 北大核心 2022年第2期584-591,共8页
计算机断层扫描(CT)三维重建技术通过上采样体数据来提高三维模型质量,减轻模型中的锯齿状边缘、条纹状伪影和不连续表面等现象,从而提高临床医学中疾病诊断的准确率。针对以往CT三维重建后模型仍然不够清晰的问题,提出一种基于超分辨... 计算机断层扫描(CT)三维重建技术通过上采样体数据来提高三维模型质量,减轻模型中的锯齿状边缘、条纹状伪影和不连续表面等现象,从而提高临床医学中疾病诊断的准确率。针对以往CT三维重建后模型仍然不够清晰的问题,提出一种基于超分辨率网络的CT三维重建算法。网络模型为具有双重损失的优化学习纵轴超分辨率重建网络(DLRNet),通过单轴超分辨率进行腹部CT三维重建。网络末端引入优化学习模块,且除计算基准图与超分辨率图像的损失外,还计算网络内部粗略重建图像与基准图的损失,这样一来,优化学习与双重损失能使网络产生更接近于基准图的结果。随后在特征提取模块引入空间特征金字塔池化和通道注意力机制,加权细化学习了不同粗细以及规模不一的血管组织的特征。最后使用动态生成卷积核组的方法进行上采样使得单一网络模型可应对不同缩放因子的上采样任务。实验结果表明,相较于通道注意力的方法RCAN(Residual Channel Attention Network),所提网络模型在2、3、4倍缩放因子下的峰值信噪比(PSNR)平均提高0.789 dB。可见所提网络模型有效提升了CT三维模型的质量,一定程度上恢复了血管组织的连续细节特征,同时具备了实用性。 展开更多
关键词 深度学习 三维重建 超分辨率 计算机断层扫描 优化学习
在线阅读 下载PDF
基于残差注意力机制的点云配准算法 被引量:8
6
作者 秦庭威 赵鹏程 +3 位作者 秦品乐 曾建朝 柴锐 黄永琦 《计算机应用》 CSCD 北大核心 2022年第7期2184-2191,共8页
针对传统点云配准算法精度低、鲁棒性差以及放疗前后癌症患者无法实现精确放疗的问题,提出一种基于残差注意力机制的点云配准算法(ADGCNNLK)。首先,在动态图深度卷积网络(DGCNN)中添加残差注意力机制来有效地利用点云的空间信息,并减少... 针对传统点云配准算法精度低、鲁棒性差以及放疗前后癌症患者无法实现精确放疗的问题,提出一种基于残差注意力机制的点云配准算法(ADGCNNLK)。首先,在动态图深度卷积网络(DGCNN)中添加残差注意力机制来有效地利用点云的空间信息,并减少信息损失;然后,利用添加残差注意力机制的DGCNN提取点云特征,这样做不仅可以在保持点云置换不变性的同时捕捉点云的局部几何特征,也可以在语义上将信息聚合起来,从而提高配准效率;最后,将提取到的特征点映射到高维空间中并使用经典的图像迭代配准算法LK进行配准。实验结果表明,所提算法与迭代最近点算法(ICP)、全局优化的ICP算法(Go-ICP)和PointNetLK相比,在无噪、有噪的情况下配准效果均最好。其中,在无噪情况下,与PointNetLK相比,所提算法的旋转均方误差降低了74.61%,平移均方误差降低了47.50%;在有噪声的情况下,与PointNetLK相比,所提算法的旋转均方误差降低了73.13%,平移均方误差降低了44.18%,说明所提算法与PointNetLK相比鲁棒性更强。将所提算法应用于放疗前后癌症患者人体点云模型的配准,从而辅助医生治疗,并实现了精确放疗。 展开更多
关键词 点云配准 特征提取 残差注意力机制 深度学习 放疗
在线阅读 下载PDF
基于注意力机制的两阶段纵膈淋巴结自动分割算法 被引量:1
7
作者 徐少伟 秦品乐 +2 位作者 曾建朝 赵致楷 高媛 《计算机应用》 CSCD 北大核心 2021年第2期556-562,共7页
判断淋巴结分区是否存在淋巴结转移以及准确分割恶性淋巴结对于肺癌诊断以及治疗意义重大。针对纵膈淋巴结尺寸差异大、正负样本不平衡、与周边软组织和肺肿瘤特征相似等问题,提出了一个新颖的用于纵膈淋巴结分割的基于注意力机制的级... 判断淋巴结分区是否存在淋巴结转移以及准确分割恶性淋巴结对于肺癌诊断以及治疗意义重大。针对纵膈淋巴结尺寸差异大、正负样本不平衡、与周边软组织和肺肿瘤特征相似等问题,提出了一个新颖的用于纵膈淋巴结分割的基于注意力机制的级联算法。首先,根据医学先验设计了两阶段分割算法剔除纵膈干扰组织后对疑似淋巴结进行分割,减少负样本的影响和训练难度,同时增强对纵膈淋巴结的分割能力;然后,引入全局聚合模块和双注意力模块以提升网络对多尺度目标和背景的分类能力。实验结果表明,提出的算法在纵膈淋巴结数据集上的准确率达到0.7079,召回率达到0.7269,Dice score达到0.7011,在准确率和Dice score上均明显优于当前其他纵膈淋巴结分割算法,能较好地解决淋巴结尺寸差异大、样本不平衡、特征易混淆等问题。 展开更多
关键词 纵膈淋巴结分割 注意力机制 计算机辅助诊断 三维卷积神经网络 三维医学影像
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部