期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于改进ResNet深度学习的古代壁画分类方法 被引量:1
1
作者 曹建芳 彭存赫 +1 位作者 陈志强 杨卓林 《电子测量技术》 北大核心 2025年第1期186-196,共11页
针对壁画图像人物间纹理,轮廓相似,不同场景下壁画人物特征差异较大,背景噪声复杂,分类易混淆等问题,提出了一种针对ResNet卷积神经网络的改进策略。首先将模型输入层中较大的7×7卷积核分离为3个串联的3×3小卷积核堆积的主干,... 针对壁画图像人物间纹理,轮廓相似,不同场景下壁画人物特征差异较大,背景噪声复杂,分类易混淆等问题,提出了一种针对ResNet卷积神经网络的改进策略。首先将模型输入层中较大的7×7卷积核分离为3个串联的3×3小卷积核堆积的主干,将2×2平均池化与最大池化进行add特征融合取代原最大池化操作,增强模型的表征能力。其次设计了一种多尺度高效的空间通道注意模块,以ECA通道注意力模块为基础,串联空间注意力模块,将空间模块中原3×3卷积核替换为SK注意力模块,融合多尺度信息捕捉全局长距离依赖关系,降低背景噪声的干扰。最后提出一种蜂窝式聚合结构,将相邻的block块中的输出信息进行add操作,作为后续层的输入,同时捕获低级和高级特征,增强上下文信息的流通性。实验结果表明:该模型在准确率、精度、召回率和F1值分别达到96.51%、96.65%、96.67%、96.63%。相对于原模型ResNet-18准确率提升9.76%,与主流的分类算法相比分类准确率、泛化能力、稳定性均有一定的提升,能够高效准确识别壁画所属类型,这对于文化遗产保护和艺术史方面研究具有显著价值。 展开更多
关键词 壁画分类 ResNet 注意力机制 特征提取 卷积神经网络 深度学习
在线阅读 下载PDF
基于Jaya算法的遮阴条件下光伏MPPT控制研究
2
作者 郭伟欣 张志东 《电源学报》 北大核心 2025年第5期105-111,共7页
针对光伏阵列在遮阴条件下群体启发式算法最大功率点跟踪MPPT(maximum power point tracking)执行依赖于算法特定的参数设置,导致算法设计难度较大、追踪效率较低、追踪误差较大等问题,提出了基于Jaya算法实现遮阴条件下MPPT的追踪控制... 针对光伏阵列在遮阴条件下群体启发式算法最大功率点跟踪MPPT(maximum power point tracking)执行依赖于算法特定的参数设置,导致算法设计难度较大、追踪效率较低、追踪误差较大等问题,提出了基于Jaya算法实现遮阴条件下MPPT的追踪控制。该算法只需通用的控制参数,不需要任何特定的控制参数,且在迭代过程中,最大功率的解始终朝着最佳解移动,并且舍弃最坏解,避免陷入局部解的情况,使系统始终准确追踪最大功率,保持高效率的运行。在MATLAB/Simulink中搭建遮阴条件下光伏阵列仿真模型,将Jaya算法与传统PSO、GA算法在同一模型下进行对比分析,实验结果表明:在寻优过程中,采用Jaya算法,最大功率追踪时间最短、追踪误差及振荡最小。在光照强度突变时,同样可以重新准确、快速定位到全局最大功率点。 展开更多
关键词 光伏阵列 遮阴条件 最大功率点跟踪 Jaya 寻优
在线阅读 下载PDF
基于集成经验模态分解算法的舰船噪声特征提取研究
3
作者 陈志强 曹建芳 彭存赫 《舰船科学技术》 北大核心 2025年第3期172-175,共4页
为解决模态混叠问题,提取更为全面的舰船噪声特征,设计了基于集成经验模态分解算法的舰船噪声特征提取方法。利用非线性局部投影滤波方法处理舰船信号,利用集成经验模态分解算法分解滤波后的噪声信号,提取具有关键噪声特征的固有模态函... 为解决模态混叠问题,提取更为全面的舰船噪声特征,设计了基于集成经验模态分解算法的舰船噪声特征提取方法。利用非线性局部投影滤波方法处理舰船信号,利用集成经验模态分解算法分解滤波后的噪声信号,提取具有关键噪声特征的固有模态函数(IMF)分量;利用相关系数法计算各IMF分量和信号间的相关系数,保留相关系数大于设置门限阈值的IMF分量,根据排列熵提取全面的舰船噪声特征。实验证明,该方法可有效分解噪声信号,得到相关系数最高的IMF分量,获得理想舰船噪声特征。 展开更多
关键词 舰船噪声 特征提取 局部投影 经验模态分解 排列熵
在线阅读 下载PDF
轻量级多目标牛行为识别模型EVH-YOLO11构建
4
作者 陈敏 任瑞仙 +1 位作者 张志东 李浩溥 《农业工程》 2025年第9期41-48,共8页
行为识别在牛生产和健康管理方面具有重要意义,当前牛行为识别方面存在模型复杂度较高、多目标识别精度较低等问题。针对这些问题,提出一种轻量级多目标牛行为识别模型EVH-YOLO11。该模型针对实际牛场环境中目标存在遮挡、重叠及小目标... 行为识别在牛生产和健康管理方面具有重要意义,当前牛行为识别方面存在模型复杂度较高、多目标识别精度较低等问题。针对这些问题,提出一种轻量级多目标牛行为识别模型EVH-YOLO11。该模型针对实际牛场环境中目标存在遮挡、重叠及小目标等复杂干扰问题,通过引入EfficientViT特征提取模块的三明治布局设计降低计算冗余;同时结合Dynamic Head模块,自适应增强目标检测性能。试验表明,EVH-YOLO11性能优于主流模型,可为智慧牛场提供技术支持。 展开更多
关键词 目标检测 YOLO11 EfficientViT 轻量化模型 智慧牛场 行为识别
在线阅读 下载PDF
PS-YOLOv8:增强电力线路检测中的小规模损坏检测 被引量:1
5
作者 宋尚泽 李莉 +1 位作者 田野 白洁 《计算机科学》 CSCD 北大核心 2024年第S02期423-428,共6页
在电力线路检测领域,准确检测细微裂纹和微小破损等微小损伤至关重要。这些轻微损坏往往因其规模小和背景复杂性而被忽视,如果不及时识别和解决,可能会升级为重大安全隐患。为了应对这一挑战,本研究设计了PowerScreen-YOLOv8(PS-YOLOv8... 在电力线路检测领域,准确检测细微裂纹和微小破损等微小损伤至关重要。这些轻微损坏往往因其规模小和背景复杂性而被忽视,如果不及时识别和解决,可能会升级为重大安全隐患。为了应对这一挑战,本研究设计了PowerScreen-YOLOv8(PS-YOLOv8)模型。该模型与原始YOLOv8相比,对电力巡检中的小目标检测有了很大进步,通过集成了6项关键改进,以提高复杂环境中的检测精度。该研究通过严格的测试和针对领先算法的基准测试证明了该模型的优越性。PS-YOLOv8获得了90.3%的准确率并且在现实无人机捕获场景中具有经过验证的稳健性,代表了电力线路检测技术的重大飞跃,为基础设施维护提供了更可靠、更高效、更安全的方法。 展开更多
关键词 电力巡检 YOLOv8 小目标检测 深度学习
在线阅读 下载PDF
无线传感器网络安全时序数据流多层次提取方法
6
作者 韩俊芳 任瑞仙 李军红 《传感技术学报》 2025年第10期1892-1897,共6页
无线传感器网络产生的数据流通常具有高维度和复杂性,包含大量传感器节点和多种类型的传感器数据,导致提取数据存在一定困难。因此,提出无线传感器网络安全时序数据流多层次提取方法。对原始时序数据流进行小波分解和信号重构,并分解为... 无线传感器网络产生的数据流通常具有高维度和复杂性,包含大量传感器节点和多种类型的传感器数据,导致提取数据存在一定困难。因此,提出无线传感器网络安全时序数据流多层次提取方法。对原始时序数据流进行小波分解和信号重构,并分解为多个层次,保留聚类特征,利用改进竞争算法训练自组织过程神经网络,将时序信号特征输入到自组织过程神经网络中,粗聚类处理时序数据流。计算时序数据流波动角和极差系数,根据预设的平稳波动值划分数据流为异常和正常两类,将其堆叠,实现时序数据流多层次提取。仿真分析表明:所提方法的平均轮廓系数保持在0.8以上,平均DBI指数不低于0.54,表明该方法可以有效且精准地提取无线传感器网络安全时序数据流。 展开更多
关键词 无线传感器网络 多层次提取 小波分解 改进竞争算法 安全时序数据流
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部