基于成对约束的聚类分析是半监督学习的一个重要研究方向。成对约束的数量已成为影响该类算法有效性的重要因素。然而,在现实应用中,成对约束的获取需要耗费大量的成本。因此,文中提出了一种基于安全性的成对约束扩充方法(Extended Algo...基于成对约束的聚类分析是半监督学习的一个重要研究方向。成对约束的数量已成为影响该类算法有效性的重要因素。然而,在现实应用中,成对约束的获取需要耗费大量的成本。因此,文中提出了一种基于安全性的成对约束扩充方法(Extended Algorithm of Pairwise Constraints Based on Security,PCES)。该算法将传递闭包中最大局部连通距离作为安全值,并根据安全值来修改传递闭包之间的相似性,减少合并传递闭包带来的风险,最后利用图聚类方法合并相似的传递闭包达到扩充成对约束的目的。该算法不仅可以安全有效地扩充成对约束,同时可以将扩充后的成对约束应用到不同半监督聚类算法中。文中在8个基准数据集上进行了成对约束扩充算法的比较。实验结果表明,该算法可以安全有效地扩充成对约束。展开更多
情绪原因对抽取任务是将情绪子句与原因子句同时抽取。针对该任务,现有模型的编码层未考虑强化情感词语义表示,且仅使用单一图注意力网络,因此,该文提出了一个使用情感词典、图网络和多头注意力的情绪原因对抽取方法(Sen-BiGAT-Inter)...情绪原因对抽取任务是将情绪子句与原因子句同时抽取。针对该任务,现有模型的编码层未考虑强化情感词语义表示,且仅使用单一图注意力网络,因此,该文提出了一个使用情感词典、图网络和多头注意力的情绪原因对抽取方法(Sen-BiGAT-Inter)。该方法首先利用情感词典与子句中的情感词汇匹配,并将匹配的情感词汇与该子句进行合并,再使用预训练模型BERT(Bidirectional Encoder Representation from Transformers)对句子进行表示。其次,建立两个图注意力网络,分别学习情绪子句和原因子句表示,进而获取候选情绪原因对的表示。在此基础上,应用多头注意力交互机制学习候选情绪原因对的全局信息,同时结合相对位置信息得到候选情绪原因对的表示,用于实现情绪原因对的抽取。在中文情绪原因对抽取数据集上的实验结果显示,相比目前最优的结果,该文所提出的模型在F;值上提升约1.95。展开更多
文摘基于成对约束的聚类分析是半监督学习的一个重要研究方向。成对约束的数量已成为影响该类算法有效性的重要因素。然而,在现实应用中,成对约束的获取需要耗费大量的成本。因此,文中提出了一种基于安全性的成对约束扩充方法(Extended Algorithm of Pairwise Constraints Based on Security,PCES)。该算法将传递闭包中最大局部连通距离作为安全值,并根据安全值来修改传递闭包之间的相似性,减少合并传递闭包带来的风险,最后利用图聚类方法合并相似的传递闭包达到扩充成对约束的目的。该算法不仅可以安全有效地扩充成对约束,同时可以将扩充后的成对约束应用到不同半监督聚类算法中。文中在8个基准数据集上进行了成对约束扩充算法的比较。实验结果表明,该算法可以安全有效地扩充成对约束。
文摘情绪原因对抽取任务是将情绪子句与原因子句同时抽取。针对该任务,现有模型的编码层未考虑强化情感词语义表示,且仅使用单一图注意力网络,因此,该文提出了一个使用情感词典、图网络和多头注意力的情绪原因对抽取方法(Sen-BiGAT-Inter)。该方法首先利用情感词典与子句中的情感词汇匹配,并将匹配的情感词汇与该子句进行合并,再使用预训练模型BERT(Bidirectional Encoder Representation from Transformers)对句子进行表示。其次,建立两个图注意力网络,分别学习情绪子句和原因子句表示,进而获取候选情绪原因对的表示。在此基础上,应用多头注意力交互机制学习候选情绪原因对的全局信息,同时结合相对位置信息得到候选情绪原因对的表示,用于实现情绪原因对的抽取。在中文情绪原因对抽取数据集上的实验结果显示,相比目前最优的结果,该文所提出的模型在F;值上提升约1.95。