期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
C3S:基于相长干涉的智能传感系统并发传输策略研究 被引量:1
1
作者 毛艳艳 程大鹏 +2 位作者 冯烟利 窦全胜 李大社 《通信学报》 EI CSCD 北大核心 2019年第1期180-194,共15页
并发传输技术对于智能传感系统具有重要意义。所提出的C3S策略基于相长干涉技术,由智能时钟同步层、智能能耗分配层和智能并行流水线层组成。智能时钟同步层设计了基于相长干涉的智能时钟校准算法ICCA,智能能耗分配层设计了相长干涉能... 并发传输技术对于智能传感系统具有重要意义。所提出的C3S策略基于相长干涉技术,由智能时钟同步层、智能能耗分配层和智能并行流水线层组成。智能时钟同步层设计了基于相长干涉的智能时钟校准算法ICCA,智能能耗分配层设计了相长干涉能量自适应调度方案CIES,智能并行流水线层实现了基于相长干涉的并行流水线CI2P。实验结果表明,C3S策略可以有效提升智能传感系统并发传输的分组接收率,降低系统的能量消耗,改善系统的信道利用率。 展开更多
关键词 并发传输技术 智能传感系统 相长干涉 能耗优化 并行流水线
在线阅读 下载PDF
k-best维特比解耦合知识蒸馏的命名实体识别模型 被引量:3
2
作者 赵红磊 唐焕玲 +2 位作者 张玉 孙雪源 鲁明羽 《计算机科学与探索》 CSCD 北大核心 2024年第3期780-794,共15页
为提升命名实体识别(NER)模型的性能,可采用知识蒸馏方法,但是传统知识蒸馏损失函数因内部存在的耦合关系会导致蒸馏效果较差。为了解除耦合关系,有效提升输出层特征知识蒸馏的效果,提出一种结合k-best维特比解码的解耦合知识蒸馏方法(k... 为提升命名实体识别(NER)模型的性能,可采用知识蒸馏方法,但是传统知识蒸馏损失函数因内部存在的耦合关系会导致蒸馏效果较差。为了解除耦合关系,有效提升输出层特征知识蒸馏的效果,提出一种结合k-best维特比解码的解耦合知识蒸馏方法(kvDKD),该方法利用k-best维特比算法提高计算效率,能够有效提升模型性能。另外,基于深度学习的命名实体识别在数据增强时易引入噪声,因此提出了融合数据筛选和实体再平衡算法的数据增强方法,旨在减少因原数据集引入噪声和增强数据错误标注的问题,提高数据集质量,减少过度拟合。最后在上述方法的基础上,提出了一种新的命名实体识别模型NER-kvDKD。在MSRA、Resume、Weibo、CLUENER和CoNLL-2003数据集上的对比实验结果表明,该方法能够提高模型的泛化能力,同时也有效提高了学生模型性能。 展开更多
关键词 命名实体识别(NER) 知识蒸馏 k-best维特比解码 数据增强
在线阅读 下载PDF
有监督主题模型的SLDA-TC文本分类新方法 被引量:11
3
作者 唐焕玲 窦全胜 +2 位作者 于立萍 宋英杰 鲁明羽 《电子学报》 EI CAS CSCD 北大核心 2019年第6期1300-1308,共9页
本文提出了一种有监督主题模型的SLDA-TC(Super vised LDA-Text Categorization)文本分类方法,引入主题-类别概率分布参数,识别主题-类别的语义信息;提出SLDA-TC-Gibbs主题采样新方法,对每个词的隐含主题采样,只从该词所在文档的同类其... 本文提出了一种有监督主题模型的SLDA-TC(Super vised LDA-Text Categorization)文本分类方法,引入主题-类别概率分布参数,识别主题-类别的语义信息;提出SLDA-TC-Gibbs主题采样新方法,对每个词的隐含主题采样,只从该词所在文档的同类其它文档中采样,并给出了理论推导;另外,其主题数只需略大于类别数.实验表明,对比LDA-TC(LDA-Text Categorization)和SVM算法,本方法能提高分类精度和时间性能. 展开更多
关键词 文本分类 主题模型 隐含Dirichlet分布 吉布斯采样
在线阅读 下载PDF
结合LDA与Word2vec的文本语义增强方法 被引量:28
4
作者 唐焕玲 卫红敏 +2 位作者 王育林 朱辉 窦全胜 《计算机工程与应用》 CSCD 北大核心 2022年第13期135-145,共11页
文本的语义表示是自然语言处理和机器学习领域的研究难点,针对目前文本表示中的语义缺失问题,基于LDA主题模型和Word2vec模型,提出一种新的文本语义增强方法Sem2vec(semantic to vector)模型。该模型利用LDA主题模型获得单词的主题分布... 文本的语义表示是自然语言处理和机器学习领域的研究难点,针对目前文本表示中的语义缺失问题,基于LDA主题模型和Word2vec模型,提出一种新的文本语义增强方法Sem2vec(semantic to vector)模型。该模型利用LDA主题模型获得单词的主题分布,计算单词与其上下文词的主题相似度,作为主题语义信息融入到词向量中,代替one-hot向量输入至Sem2vec模型,在最大化对数似然目标函数约束下,训练Sem2vec模型的最优参数,最终输出增强的语义词向量表示,并进一步得到文本的语义增强表示。在不同数据集上的实验结果表明,相比其他经典模型,Sem2vec模型的语义词向量之间的语义相似度计算更为准确。另外,根据Sem2vec模型得到的文本语义向量,在多种文本分类算法上的分类结果,较其他经典模型可以提升0.58%~3.5%,同时也提升了时间性能。 展开更多
关键词 LDA主题模型 Word2vec模型 语义词向量 语义相似度 文本分类
在线阅读 下载PDF
面向时钟领域的BERT-LCRF命名实体识别方法 被引量:4
5
作者 唐焕玲 王慧 +3 位作者 隗昊 赵红磊 窦全胜 鲁明羽 《计算机工程与应用》 CSCD 北大核心 2022年第18期218-226,共9页
命名实体识别是构建时钟领域知识图谱的关键步骤,然而目前时钟领域存在标注样本数量少等问题,导致面向时钟领域的命名实体识别精度不高。为此,利用预训练语言模型BERT进行时钟领域文本的特征提取,利用线性链条件随机场(Linear-CRF)方法... 命名实体识别是构建时钟领域知识图谱的关键步骤,然而目前时钟领域存在标注样本数量少等问题,导致面向时钟领域的命名实体识别精度不高。为此,利用预训练语言模型BERT进行时钟领域文本的特征提取,利用线性链条件随机场(Linear-CRF)方法进行序列标注,提出了一种BERT-LCRF的命名实体识别模型。对比实验结果表明,该模型能够充分学习时钟领域的特征信息,提升序列标注精度,进而提升时钟领域的命名实体识别效果。 展开更多
关键词 命名实体识别 预训练语言模型 条件随机场 自注意力机制 深度学习
在线阅读 下载PDF
Tr-SLDA:一种面向交叉领域的迁移主题模型 被引量:2
6
作者 唐焕玲 郑涵 +3 位作者 刘艳红 马思源 窦全胜 鲁明羽 《电子学报》 EI CAS CSCD 北大核心 2021年第3期605-613,共9页
当目标领域缺少足够多的标注数据时,迁移学习利用相关源领域的标注数据,辅助提升目标域的学习性能,但是目标域与源域的数据通常不满足独立同分布,容易导致“负迁移”问题.本文在有监督主题模型(Supervised LDA,SLDA)的基础上,融合迁移... 当目标领域缺少足够多的标注数据时,迁移学习利用相关源领域的标注数据,辅助提升目标域的学习性能,但是目标域与源域的数据通常不满足独立同分布,容易导致“负迁移”问题.本文在有监督主题模型(Supervised LDA,SLDA)的基础上,融合迁移学习方法提出一种共享主题知识的迁移主题模型(Transfer SLDA,Tr-SLDA),提出Tr-SLDA-Gibbs主题采样新方法,在类别标签的约束下对不同领域文档中的词采取不同的采样策略,且无需指定主题个数.辅助源域与目标域共享潜在主题空间,Tr-SLDA通过发现潜在共享主题与不同领域类别之间的语义关联从源域迁移知识,可以有效解决“负迁移”问题.基于Tr-SLDA迁移主题模型提出Tr-SLDA-TC(Tr-SLDA Text Categorization)文本分类方法.对比实验表明,该方法可有效利用源域知识来提高目标领域的分类性能. 展开更多
关键词 文本分类 主题模型 吉布斯采样 迁移学习 负迁移
在线阅读 下载PDF
基于自适应组合核的鲁棒视频目标跟踪算法
7
作者 刘培强 张加惠 +1 位作者 吴大伟 安志勇 《计算机应用》 CSCD 北大核心 2018年第12期3372-3379,共8页
为了解决核化相关滤波器(KCF)在复杂场景下鲁棒性差的问题,提出了基于自适应组合核(SACK)的目标跟踪算法。跟踪任务分为位置跟踪和尺度跟踪两个独立部分。首先,以线性核和高斯核的自适应组合作为核跟踪滤波器,构造了SACK权重的风险目标... 为了解决核化相关滤波器(KCF)在复杂场景下鲁棒性差的问题,提出了基于自适应组合核(SACK)的目标跟踪算法。跟踪任务分为位置跟踪和尺度跟踪两个独立部分。首先,以线性核和高斯核的自适应组合作为核跟踪滤波器,构造了SACK权重的风险目标函数。该函数根据核的响应值自适应调整线性核和高斯核权重,不仅考虑了不同核响应输出的经验风险泛函最小,而且考虑了极大响应值的风险泛函,同时具有局部核和全局核的优点。然后,根据该滤波器的输出响应得到目标精确位置,设计了基于目标极大响应值的自适应更新率,针对位置跟踪滤波器进行自适应更新。最后,利用尺度跟踪器对目标尺度进行估计。实验结果表明,所提算法的成功率和距离精度在OTB-50数据库表现最优,比KCF算法分别高6. 8个百分点和4. 1个百分点,比双向尺度估计跟踪(BSET)算法分别高2个百分点和3. 2个百分点。该算法对形变和遮挡等复杂场景具有很强的适应能力。 展开更多
关键词 目标跟踪 傅里叶变换 核化相关滤波器 组合核 岭回归
在线阅读 下载PDF
融合词信息嵌入的注意力自适应命名实体识别 被引量:6
8
作者 赵萍 窦全胜 +2 位作者 唐焕玲 姜平 陈淑振 《计算机工程与应用》 CSCD 北大核心 2023年第8期167-174,共8页
缺少分词信息及未登录词、无关词干扰是字符级中文命名实体识别面临的主要问题,提出了融合词信息嵌入的注意力自适应中文命名实体识别模型,在新词发现的基础上,将字向量嵌入与词级信息嵌入融合作为模型输入,减少了未登录词对模型的影响... 缺少分词信息及未登录词、无关词干扰是字符级中文命名实体识别面临的主要问题,提出了融合词信息嵌入的注意力自适应中文命名实体识别模型,在新词发现的基础上,将字向量嵌入与词级信息嵌入融合作为模型输入,减少了未登录词对模型的影响,并增强了实体特征的显著性,使实体特征更容易被学习器获取;同时,在注意力机制中引入动态缩放因子,自适应地调整相关实体和无关词的注意力分布,一定程度上减小了无关词对模型的干扰。将该方法在公共数据集上进行实验,实验结果证明了方法的有效性。 展开更多
关键词 中文命名实体识别 注意力机制 动态缩放因子 未登录词
在线阅读 下载PDF
自适应匹配追踪图像去噪算法 被引量:5
9
作者 李桂会 李晋江 范辉 《计算机科学》 CSCD 北大核心 2020年第1期176-185,共10页
针对目前的稀疏去噪算法分解效率低、去噪效果不理想的问题,提出了一种基于自适应匹配追踪的图像去噪算法。该算法首先通过自适应匹配追踪算法求解稀疏系数,然后利用K奇异值分解算法将字典训练成能够有效反映图像结构特征的自适应字典,... 针对目前的稀疏去噪算法分解效率低、去噪效果不理想的问题,提出了一种基于自适应匹配追踪的图像去噪算法。该算法首先通过自适应匹配追踪算法求解稀疏系数,然后利用K奇异值分解算法将字典训练成能够有效反映图像结构特征的自适应字典,最后将稀疏系数与自适应字典相结合来重构图像。在重构过程中,将噪声对应的系数去除,最终达到去噪的效果。算法引入Spike-Slab先验来引导稀疏系数矩阵的稀疏性,并利用两个权重矩阵促使去噪模型更加真实。鉴于字典在稀疏算法中的重要性,将自适应字典与DCT冗余字典、Global字典进行比较。实验结果显示,选择自适应字典的去噪结果比传统字典在峰值信噪比上高出约4.5 dB;与目前6种主流的稀疏去噪方法相比,文中提出的方法在3种评价指标上均有不同程度的提高,其中峰值信噪比平均提高了约0.76~6.24 dB,特征相似度平均提高了约0.012~0.082,结构相似性平均提高了约0.015~0.108。对图像去噪算法进行定性的评价,结果显示所提算法保留了更多的有用信息,视觉效果最佳。实验充分证明了自适应匹配追踪图像去噪算法对图像去噪的有效性和鲁棒性。 展开更多
关键词 图像去噪 稀疏表示 自适应匹配追踪 K奇异值分解 Spike-Slab先验
在线阅读 下载PDF
基于二分图的个性化图像标签推荐算法 被引量:2
10
作者 赵天龙 刘峥 +1 位作者 韩慧健 张彩明 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第6期1193-1205,共13页
传统的图像标签推荐方法通过对图像视觉内容的分析计算标签与图像的相关度,完成标签推荐任务.而社会网络图像具有丰富的元数据,例如图像所属群组、地理位置等,充分利用这些元数据对于提高标签推荐的准确性具有积极意义.提出一种基于二... 传统的图像标签推荐方法通过对图像视觉内容的分析计算标签与图像的相关度,完成标签推荐任务.而社会网络图像具有丰富的元数据,例如图像所属群组、地理位置等,充分利用这些元数据对于提高标签推荐的准确性具有积极意义.提出一种基于二分图的个性化图像标签推荐算法,通过充分挖掘图像、群组、地理位置与标签的关系,针对用户提供的少量标签进行个性化图像标签推荐.该算法建立了图像-标签、群组-标签、地理位置-标签等三个二分图模型,考虑到每个标签的重要性不同,引入TF-IDF(Term Frequency-Inverse Document Frenquency)技术对标签进行加权处理.利用二分图将初始标签分值进行信息扩散,计算出最终标签分值向量,并将该向量中分值较高的标签作为推荐结果.实验结果表明,融合了图像与群组、地理位置等元数据的个性化图像标签推荐结果的NDCG(Normalized Discounted Cumulative Gain)值优于仅单方面考虑图像、群组以及地理位置的标签推荐结果. 展开更多
关键词 图像元数据 标签偏好 二分图 个性化标签推荐 标签排序
在线阅读 下载PDF
嵌入不同邻域表征的方面级情感分析模型 被引量:2
11
作者 刘欢 窦全胜 《计算机应用》 CSCD 北大核心 2023年第1期37-44,共8页
方面级情感分析(ABSA)任务旨在识别特定方面的情感极性,然而现有的相关模型对结构不定的自然语句缺少对方面词上下文的短距离约束,且容易忽略句法关系,因而难以准确判定方面的情感极性。针对上述问题,提出嵌入不同邻域表征(EDNR)的ABSA... 方面级情感分析(ABSA)任务旨在识别特定方面的情感极性,然而现有的相关模型对结构不定的自然语句缺少对方面词上下文的短距离约束,且容易忽略句法关系,因而难以准确判定方面的情感极性。针对上述问题,提出嵌入不同邻域表征(EDNR)的ABSA模型。在该模型中,在获得句子语序信息的基础上,采用近邻策略并结合卷积神经网络(CNN)获取方面的邻域信息,减少较远无关信息对模型的影响;同时,引入语句的语法信息,增加单词之间的依赖关系;将上述两种特征融合后,使用Mask与注意力机制来特别关注方面信息,减少无用信息对情感分析模型的干扰。此外,为评价上下文和语法信息对情感极性的影响程度,提出一个信息评估系数。在5个公共数据集上进行实验的结果表明,与情感分析模型聚合图卷积网络-最大值函数(AGCN-MAX)相比,EDNR模型在数据集14Lap上的正确率和F1值分别提升了2.47和2.83个百分点。由此可见,EDNR模型可以有效捕获情感特征,提高分类性能。 展开更多
关键词 方面级情感分析 邻域表征 情感极性 近邻策略 信息评估系数
在线阅读 下载PDF
融合主题模型和动态路由的小样本学习方法
12
作者 张淑芳 唐焕玲 +3 位作者 郑涵 刘孝炎 窦全胜 鲁明羽 《数据采集与处理》 CSCD 北大核心 2022年第3期586-596,共11页
针对小样本学习标注训练样本过少,导致特征表达力弱的问题,本文结合有监督主题模型(Supervised LDA,SLDA)和动态路由算法提出一种新的动态路由原型网络模型(Dynamic routing prototypical network based on SLDA,DRP-SLDA)。利用SLDA主... 针对小样本学习标注训练样本过少,导致特征表达力弱的问题,本文结合有监督主题模型(Supervised LDA,SLDA)和动态路由算法提出一种新的动态路由原型网络模型(Dynamic routing prototypical network based on SLDA,DRP-SLDA)。利用SLDA主题模型建立词汇与类别之间的语义映射,增强词的类别分布特征,从词粒度角度编码获得样本的语义表示。提出动态路由原型网络(Dynamic routing prototypical network,DR-Proto),通过提取交叉特征利用样本之间的语义关系,采用动态路由算法迭代生成具有类别代表性的动态原型,旨在解决特征表达问题。实验结果表明,DRP-SLDA模型能有效提取词的类别分布特征,且获取动态原型提高类别辨识力,从而能够有效提升小样本文本分类的泛化性能。 展开更多
关键词 小样本学习 元学习 原型网络 有监督主题模型 文本分类
在线阅读 下载PDF
基于结构洞的多数据源融合关键蛋白质识别方法
13
作者 杨壮 刘培强 +1 位作者 费兆杰 刘畅 《计算机科学》 CSCD 北大核心 2020年第S02期40-45,72,共7页
关键蛋白质识别是当前计算生物学领域的一个研究热点和难点。通过计算方法识别关键蛋白质的方法主要有DC,BC,LAC,PeC,ION和LIDC等。现有方法的识别准确率还有待进一步提高,主要原因是其仅使用了蛋白质相互作用网络单一数据源,以及蛋白... 关键蛋白质识别是当前计算生物学领域的一个研究热点和难点。通过计算方法识别关键蛋白质的方法主要有DC,BC,LAC,PeC,ION和LIDC等。现有方法的识别准确率还有待进一步提高,主要原因是其仅使用了蛋白质相互作用网络单一数据源,以及蛋白质相互作用网络中存在许多假阳性和假阴性数据等。为了提高识别准确率,提出一种高效识别方法PSHC。首先,PSHC方法首次把结构洞理论引入到关键蛋白质识别方法中;其次,融合了蛋白质相互作用网络和蛋白质复合物两种数据源用于识别关键蛋白质。在真实数据上的实验结果表明,与其他传统方法相比,PSHC方法可以识别更多关键蛋白质,并且敏感度、特异性、准确性、阳性预测值、阴性预测值、F测度等统计指标也明显高于其他方法。 展开更多
关键词 蛋白质相互作用网络 结构洞 蛋白质复合物 关键蛋白质
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部