文本的语义表示是自然语言处理和机器学习领域的研究难点,针对目前文本表示中的语义缺失问题,基于LDA主题模型和Word2vec模型,提出一种新的文本语义增强方法Sem2vec(semantic to vector)模型。该模型利用LDA主题模型获得单词的主题分布...文本的语义表示是自然语言处理和机器学习领域的研究难点,针对目前文本表示中的语义缺失问题,基于LDA主题模型和Word2vec模型,提出一种新的文本语义增强方法Sem2vec(semantic to vector)模型。该模型利用LDA主题模型获得单词的主题分布,计算单词与其上下文词的主题相似度,作为主题语义信息融入到词向量中,代替one-hot向量输入至Sem2vec模型,在最大化对数似然目标函数约束下,训练Sem2vec模型的最优参数,最终输出增强的语义词向量表示,并进一步得到文本的语义增强表示。在不同数据集上的实验结果表明,相比其他经典模型,Sem2vec模型的语义词向量之间的语义相似度计算更为准确。另外,根据Sem2vec模型得到的文本语义向量,在多种文本分类算法上的分类结果,较其他经典模型可以提升0.58%~3.5%,同时也提升了时间性能。展开更多
在标签均衡分布且标注样本足够多的数据集上,监督式分类算法通常可以取得比较好的分类效果。然而,在实际应用中样本的标签分布通常是不均衡的,分类算法的分类性能就变得比较差。为此,结合SLDA(Supervised LDA)有监督主题模型,提出一种...在标签均衡分布且标注样本足够多的数据集上,监督式分类算法通常可以取得比较好的分类效果。然而,在实际应用中样本的标签分布通常是不均衡的,分类算法的分类性能就变得比较差。为此,结合SLDA(Supervised LDA)有监督主题模型,提出一种不均衡文本分类新算法ITC-SLDA(Imbalanced Text Categorization based on Supervised LDA)。基于SLDA主题模型,建立主题与稀少类别之间的精确映射,以提高少数类的分类精度。利用SLDA模型对未标注样本进行标注,提出一种新的未标注样本的置信度计算方法,以及类别约束的采样策略,旨在有效采样未标注样本,最终降低不均衡文本的倾斜度,提升不均衡文本的分类性能。实验结果表明,所提方法能明显提高不均衡文本分类任务中的Macro-F1和G-mean值。展开更多
提出基于点特异度和自适应分类策略的血管分割方法(SSVD,specificity and self-adaptive vessel detection),首先给出点特异度的定义,通过设置高点特异度阈值,实现主血管的提取,然后由多主体进行自适应像素分类,将每个未确定像素作为一...提出基于点特异度和自适应分类策略的血管分割方法(SSVD,specificity and self-adaptive vessel detection),首先给出点特异度的定义,通过设置高点特异度阈值,实现主血管的提取,然后由多主体进行自适应像素分类,将每个未确定像素作为一个Agent,在多尺度点特异度阈值范围内,根据邻域Agent状态修订自身状态,逐步完成对像素的分类,最后通过多窗口去噪对噪音进行滤除完成对图像血管结构的分割。将SSVD方法应用到DRIVE数据库眼底图像的血管分割中,实验结果表明该方法要比现有其他方法具有更高的准确度和效率。展开更多
文摘文本的语义表示是自然语言处理和机器学习领域的研究难点,针对目前文本表示中的语义缺失问题,基于LDA主题模型和Word2vec模型,提出一种新的文本语义增强方法Sem2vec(semantic to vector)模型。该模型利用LDA主题模型获得单词的主题分布,计算单词与其上下文词的主题相似度,作为主题语义信息融入到词向量中,代替one-hot向量输入至Sem2vec模型,在最大化对数似然目标函数约束下,训练Sem2vec模型的最优参数,最终输出增强的语义词向量表示,并进一步得到文本的语义增强表示。在不同数据集上的实验结果表明,相比其他经典模型,Sem2vec模型的语义词向量之间的语义相似度计算更为准确。另外,根据Sem2vec模型得到的文本语义向量,在多种文本分类算法上的分类结果,较其他经典模型可以提升0.58%~3.5%,同时也提升了时间性能。
文摘在标签均衡分布且标注样本足够多的数据集上,监督式分类算法通常可以取得比较好的分类效果。然而,在实际应用中样本的标签分布通常是不均衡的,分类算法的分类性能就变得比较差。为此,结合SLDA(Supervised LDA)有监督主题模型,提出一种不均衡文本分类新算法ITC-SLDA(Imbalanced Text Categorization based on Supervised LDA)。基于SLDA主题模型,建立主题与稀少类别之间的精确映射,以提高少数类的分类精度。利用SLDA模型对未标注样本进行标注,提出一种新的未标注样本的置信度计算方法,以及类别约束的采样策略,旨在有效采样未标注样本,最终降低不均衡文本的倾斜度,提升不均衡文本的分类性能。实验结果表明,所提方法能明显提高不均衡文本分类任务中的Macro-F1和G-mean值。
文摘当目标领域缺少足够多的标注数据时,迁移学习利用相关源领域的标注数据,辅助提升目标域的学习性能,但是目标域与源域的数据通常不满足独立同分布,容易导致“负迁移”问题.本文在有监督主题模型(Supervised LDA,SLDA)的基础上,融合迁移学习方法提出一种共享主题知识的迁移主题模型(Transfer SLDA,Tr-SLDA),提出Tr-SLDA-Gibbs主题采样新方法,在类别标签的约束下对不同领域文档中的词采取不同的采样策略,且无需指定主题个数.辅助源域与目标域共享潜在主题空间,Tr-SLDA通过发现潜在共享主题与不同领域类别之间的语义关联从源域迁移知识,可以有效解决“负迁移”问题.基于Tr-SLDA迁移主题模型提出Tr-SLDA-TC(Tr-SLDA Text Categorization)文本分类方法.对比实验表明,该方法可有效利用源域知识来提高目标领域的分类性能.
文摘提出基于点特异度和自适应分类策略的血管分割方法(SSVD,specificity and self-adaptive vessel detection),首先给出点特异度的定义,通过设置高点特异度阈值,实现主血管的提取,然后由多主体进行自适应像素分类,将每个未确定像素作为一个Agent,在多尺度点特异度阈值范围内,根据邻域Agent状态修订自身状态,逐步完成对像素的分类,最后通过多窗口去噪对噪音进行滤除完成对图像血管结构的分割。将SSVD方法应用到DRIVE数据库眼底图像的血管分割中,实验结果表明该方法要比现有其他方法具有更高的准确度和效率。