期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合TA-TCN和迁移学习的滚动轴承寿命预测 被引量:2
1
作者 车鲁阳 冷子文 +2 位作者 付惠琛 张佳佳 高军伟 《组合机床与自动化加工技术》 北大核心 2024年第3期147-151,共5页
针对在实际工业生产中,滚动轴承由于数据量少导致剩余寿命预测的准确度不高的问题,提出了一种时序注意力(temporal attention, TA)优化的时间卷积神经网络(time convolutional networks, TCN)与迁移学习相结合的剩余寿命预测方法。首先... 针对在实际工业生产中,滚动轴承由于数据量少导致剩余寿命预测的准确度不高的问题,提出了一种时序注意力(temporal attention, TA)优化的时间卷积神经网络(time convolutional networks, TCN)与迁移学习相结合的剩余寿命预测方法。首先,通过互补集合经验模态分解(complementary ensemble empirical mode decomposition, CEEMD)将原始特征向量分解为一组子序列分量,突出特征信号、降低噪声干扰;然后,将子序列分量输入搭建好的TCN模型并添加TA进行优化,深度挖掘深度特征与退化曲线关系;最后,引入迁移学习,利用源域数据进行训练和少量目标域数据进行参数微调,得到目标网络模型。经实例验证,所提模型的稳定性、预测精度相对于其它对比模型有所提升,且在异工况条件下依然有着良好的预测能力。 展开更多
关键词 滚动轴承 寿命预测 互补集合经验模态分解 时序注意力 时间卷积神经网络 迁移学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部