期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合运动特征和深度学习的跌倒检测算法 被引量:23
1
作者 曹建荣 吕俊杰 +2 位作者 武欣莹 张旭 杨红娟 《计算机应用》 CSCD 北大核心 2021年第2期583-589,共7页
为了利用计算机视觉技术准确检测老年人的跌倒状况,针对现有跌倒检测算法中人为设计特征造成的不完备性以及跌倒检测过程中前后景分离困难、目标混淆、运动目标丢失、跌倒检测准确率低等问题,提出了一种融合人体运动信息的深度学习跌倒... 为了利用计算机视觉技术准确检测老年人的跌倒状况,针对现有跌倒检测算法中人为设计特征造成的不完备性以及跌倒检测过程中前后景分离困难、目标混淆、运动目标丢失、跌倒检测准确率低等问题,提出了一种融合人体运动信息的深度学习跌倒检测算法对人体跌倒状态进行检测。首先,通过改进YOLOv3网络进行前景与背景的分离,并根据YOLOv3网络的检测结果对前景人体目标进行最小外接矩形标记;其次,分析人体跌倒过程中的运动特征,将人体运动特征向量化并通过Sigmoid激活函数转化为0到1之间的运动权重信息;最后,通过全连接层将将运动特征与卷积神经网络(CNN)提取的特征进行拼接和融合从而实现人体跌倒分类判别。将所提跌倒检测算法与背景差分、高斯混合、VIBE、方向梯度直方图(HOG)等人体目标检测算法及阈值法、分级法、支持向量机(SVM)分类和CNN分类等人体跌倒判断方案进行了对比实验,并将所提跌倒检测算法在不同光照条件下和混合日常噪声运动干扰下进行了实验,结果表明所提算法在环境适应性和跌倒检测准确率上都优于传统的人体跌倒检测方法。该算法能有效检测出视频中的人体并对人体跌倒状态进行准确检测,进一步验证了融合运动信息的深度学习识别方法在视频跌倒行为分析上的可行性与高效性。 展开更多
关键词 跌倒检测 深度学习 目标检测 YOLO网络 运动特征
在线阅读 下载PDF
基于关节点特征的跌倒检测算法 被引量:3
2
作者 曹建荣 朱亚琴 +2 位作者 张玉婷 吕俊杰 杨红娟 《计算机应用》 CSCD 北大核心 2022年第2期622-630,共9页
针对跌倒检测算法中存在网络计算量大和类跌倒行为难以区分的问题,提出一种基于关节点特征的跌倒检测算法。首先,在目前先进的CenterNet算法基础上提出了深度可分离卷积CenterNet(DSC-CenterNet)关节点检测算法,从而在减少骨干网络计算... 针对跌倒检测算法中存在网络计算量大和类跌倒行为难以区分的问题,提出一种基于关节点特征的跌倒检测算法。首先,在目前先进的CenterNet算法基础上提出了深度可分离卷积CenterNet(DSC-CenterNet)关节点检测算法,从而在减少骨干网络计算量的同时准确检测人体关节点并获取关节点坐标;然后,基于关节点位置和人体先验知识来提取可充分表达跌倒行为的空间特征和时间特征作为关节点特征;最后,把关节点特征向量输入全连接层,并经Sigmoid分类器输出跌倒或非跌倒两种类别,从而实现人体目标的跌倒检测。实验结果表明,所提算法在UR Fall Detection数据集上对不同状态变化下跌倒检测的平均准确率达到98.00%,区分类跌倒行为的准确率达到98.22%,跌倒检测速度为18.6 frame/s。与原CenterNet结合关节点特征跌倒检测的算法相比,DSC-CenterNet结合关节点特征算法的跌倒检测速度提升了22.37%,提高后的速度可有效满足视频监控下人体跌倒检测任务的实时性。该算法能有效提高跌倒检测速度并对人体跌倒状态进行准确检测,且进一步验证了基于关节点特征的跌倒检测算法在视频跌倒行为分析中的可行性与高效性。 展开更多
关键词 跌倒检测 深度学习 CenterNet算法 关节点检测 关节点特征
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部