精细的田块数据是现代农业的重要基础资料,该研究针对从高分辨率遥感影像中提取田块精细数据的需求,建立了一种先验知识融合语义特征的冬小麦田块精细提取方法(prior knowledge and semantic features integration-based farmland parce...精细的田块数据是现代农业的重要基础资料,该研究针对从高分辨率遥感影像中提取田块精细数据的需求,建立了一种先验知识融合语义特征的冬小麦田块精细提取方法(prior knowledge and semantic features integration-based farmland parcel extraction methodology,PKFFPE),PKFFPE以遥感图像和相应的边缘图像作为输入,采用编码器-解码器结构进行特征提取,利用多尺度注意力模块捕获不同尺度的关键特征,使用SoftMax对图像进行初步分割;通过深入分析同一田块内颜色、纹理等特征的分布规律获取先验知识,利用先验知识建立后处理方法,对初分割结果进行优化,生成田块精细数据。选择河北省邯郸市馆陶县和山东省泰安市宁阳县作为试验区,用于验证PKFFPE方法在平原地区和丘陵地区的适用性;选择UNet、ErfNet、SegNet、EIGNet,以及面向对象分类的方法作为初分割的对比方法,选择条件随机场和形态学处理作为的后处理的对比方法开展对比试验。试验结果表明,PKFFPE方法在馆陶县、宁阳县结果的准确率(96.1%、93.2%)、精确率(90.6%、87.6%)、召回率(93.2%、90.6%)、和F1分数(91.9%,89.0%)均优于对比方法,证明了PKFFPE方法在从高分辨遥感影像中提取田块精细数据方面具有突出的优势,能够应用于科研和生产实践。展开更多
获取到高质量的特征是从遥感影像中提取高精度的农作物空间分布的关键,该研究针对利用哨兵2A(Sentinel-2A)影像提取高精度的冬小麦空间分布开展研究。针对影像中存在的数据空间尺度不一致的问题,以生成式对抗网络为基础建立了降尺度模型...获取到高质量的特征是从遥感影像中提取高精度的农作物空间分布的关键,该研究针对利用哨兵2A(Sentinel-2A)影像提取高精度的冬小麦空间分布开展研究。针对影像中存在的数据空间尺度不一致的问题,以生成式对抗网络为基础建立了降尺度模型REDS(Red Edge Down Scale),用于将B5、B6、B7、B114个通道的空间分辨率从20 m降为10 m;然后利用卷积神经网络构建了逐像素分割模型REVINet(Red Edge and Vegetation Index Feature Network),REVINet以10m分辨率的B2、B3、B4、B5、B6、B7、B8、B11,以及提取出的增强植被指数、归一化植被指数和归一化差值红边指数组合作为输入,进行逐像素分类。选择ERFNet、U-Net和RefineNet作为对比模型同REVINet开展对比试验,试验结果表明,该研究提出的方法在召回率(92.15%)、查准率(93.74%)、准确率(93.09%)和F1分数(92.94%)上均优于对比方法,表明了该研究在从Sentinel-2A中提取冬小麦空间分布方面具有明显的优势。展开更多
文摘精细的田块数据是现代农业的重要基础资料,该研究针对从高分辨率遥感影像中提取田块精细数据的需求,建立了一种先验知识融合语义特征的冬小麦田块精细提取方法(prior knowledge and semantic features integration-based farmland parcel extraction methodology,PKFFPE),PKFFPE以遥感图像和相应的边缘图像作为输入,采用编码器-解码器结构进行特征提取,利用多尺度注意力模块捕获不同尺度的关键特征,使用SoftMax对图像进行初步分割;通过深入分析同一田块内颜色、纹理等特征的分布规律获取先验知识,利用先验知识建立后处理方法,对初分割结果进行优化,生成田块精细数据。选择河北省邯郸市馆陶县和山东省泰安市宁阳县作为试验区,用于验证PKFFPE方法在平原地区和丘陵地区的适用性;选择UNet、ErfNet、SegNet、EIGNet,以及面向对象分类的方法作为初分割的对比方法,选择条件随机场和形态学处理作为的后处理的对比方法开展对比试验。试验结果表明,PKFFPE方法在馆陶县、宁阳县结果的准确率(96.1%、93.2%)、精确率(90.6%、87.6%)、召回率(93.2%、90.6%)、和F1分数(91.9%,89.0%)均优于对比方法,证明了PKFFPE方法在从高分辨遥感影像中提取田块精细数据方面具有突出的优势,能够应用于科研和生产实践。
文摘获取到高质量的特征是从遥感影像中提取高精度的农作物空间分布的关键,该研究针对利用哨兵2A(Sentinel-2A)影像提取高精度的冬小麦空间分布开展研究。针对影像中存在的数据空间尺度不一致的问题,以生成式对抗网络为基础建立了降尺度模型REDS(Red Edge Down Scale),用于将B5、B6、B7、B114个通道的空间分辨率从20 m降为10 m;然后利用卷积神经网络构建了逐像素分割模型REVINet(Red Edge and Vegetation Index Feature Network),REVINet以10m分辨率的B2、B3、B4、B5、B6、B7、B8、B11,以及提取出的增强植被指数、归一化植被指数和归一化差值红边指数组合作为输入,进行逐像素分类。选择ERFNet、U-Net和RefineNet作为对比模型同REVINet开展对比试验,试验结果表明,该研究提出的方法在召回率(92.15%)、查准率(93.74%)、准确率(93.09%)和F1分数(92.94%)上均优于对比方法,表明了该研究在从Sentinel-2A中提取冬小麦空间分布方面具有明显的优势。