期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于巴氏系数和Jaccard系数的协同过滤算法 被引量:17
1
作者 杨家慧 刘方爱 《计算机应用》 CSCD 北大核心 2016年第7期2006-2010,共5页
针对传统基于邻域的协同过滤推荐算法存在数据稀疏性及相似性度量只能利用用户共同评分的问题,提出一种基于巴氏系数和Jaccard系数的协同过滤算法(CFBJ)。在项目相似性度量中,该算法引入巴氏系数和Jaccard系数,巴氏系数利用用户所有评... 针对传统基于邻域的协同过滤推荐算法存在数据稀疏性及相似性度量只能利用用户共同评分的问题,提出一种基于巴氏系数和Jaccard系数的协同过滤算法(CFBJ)。在项目相似性度量中,该算法引入巴氏系数和Jaccard系数,巴氏系数利用用户所有评分信息克服共同评分的限制,Jaccard系数可以增加相似性度量中共同评分项所占的比重。该算法通过提高项目相似度准确率来选取最近邻,优化了对目标用户的偏好预测和个性化推荐。实验结果表明,该算法比平均值-杰卡德差分(MJD)算法、皮尔森系数(PC)算法、杰卡德均方差(JMSD)算法、PIP算法误差更小,分类准确率更高,有效缓解了用户评分数据稀疏所带来的问题,提高了推荐系统的预测准确率。 展开更多
关键词 协同过滤 巴氏系数 杰卡德系数 相似性度量 矩阵稀疏性
在线阅读 下载PDF
改进的多数据流协同频繁项集挖掘算法 被引量:5
2
作者 王鑫 刘方爱 《计算机应用》 CSCD 北大核心 2016年第7期1988-1992,共5页
针对已有的多数据流协同频繁项集挖掘算法存在内存占用率高以及发现频繁项集效率低的问题,提出了改进的多数据流协同频繁项集挖掘(MCMD-Stream)算法。首先,该算法利用单遍扫描数据库的字节序列滑动窗口挖掘算法发现数据流中的潜在频繁... 针对已有的多数据流协同频繁项集挖掘算法存在内存占用率高以及发现频繁项集效率低的问题,提出了改进的多数据流协同频繁项集挖掘(MCMD-Stream)算法。首先,该算法利用单遍扫描数据库的字节序列滑动窗口挖掘算法发现数据流中的潜在频繁项集和频繁项集;其次,构建类似频繁模式树(FP-Tree)的压缩频繁模式树(CPTree)存储已发现的潜在频繁项集和频繁项集,同时更新CP-Tree树中每个节点生成的对数倾斜时间表中的频繁项计数;最后,通过汇总分析得出在多条数据流中多次出现的且有价值的频繁项集,即协同频繁项集。相比A-Stream和HStream算法,MCMD-Stream算法不仅能够提高多数据流中协同频繁项集挖掘的效率,并且还降低了内存空间的使用率。实验结果表明MCMD-Stream算法能够有效地应用于多数据流的协同频繁项集挖掘。 展开更多
关键词 流数据挖掘 多数据流 滑动窗口 频繁项集 协同频繁项集
在线阅读 下载PDF
基于聚类划分的高效用模式并行挖掘算法 被引量:25
3
作者 邢淑凝 刘方爱 赵晓晖 《计算机应用》 CSCD 北大核心 2016年第8期2202-2206,2212,共6页
针对在大规模数据库中挖掘高效用模式产生大量基于内存的效用模式树,从而导致内存空间占用较大以及丢失一些高效用项集的问题,提出在Hadoop分布式计算平台下的基于聚类划分的高效用模式并行挖掘算法PUCP。首先,采用聚类的方法把数据库... 针对在大规模数据库中挖掘高效用模式产生大量基于内存的效用模式树,从而导致内存空间占用较大以及丢失一些高效用项集的问题,提出在Hadoop分布式计算平台下的基于聚类划分的高效用模式并行挖掘算法PUCP。首先,采用聚类的方法把数据库中相似的事务划分为若干数据子集;然后,把若干划分好的数据子集分配到Hadoop平台的各个节点中构造效用模式树;最后,把各个节点中相同项的条件模式基分配到同一个节点中进行挖掘,以减少各个节点交叉操作的次数。通过实验结果和理论分析表明:PUCP算法在不影响挖掘结果可靠性的前提下,与主流串行高效用模式挖掘——效用模式增长挖掘算法(UP-Growth)和现有的并行高效用模式挖掘算法PHUI-Growth相比,挖掘效率分别提高了61.2%和16.6%;并且使用了Hadoop计算平台,能有效缓解挖掘大规模数据的内存压力。 展开更多
关键词 大数据 高效用模式挖掘 聚类 并行计算 HADOOP
在线阅读 下载PDF
基于改进群搜索优化算法的群体路径规划方法 被引量:4
4
作者 郑慧杰 刘弘 郑向伟 《计算机应用》 CSCD 北大核心 2012年第8期2223-2226,共4页
针对群体动画中传统路径规划算法搜索时间长、寻优能力差等问题,提出一种利用群搜索算法进行多线程路径规划的方法。该方法首先将模拟退火算法引入到搜索模式中,克服算法易陷入局部最优的问题;其次,通过结合多线程和路径随机拼接技术,... 针对群体动画中传统路径规划算法搜索时间长、寻优能力差等问题,提出一种利用群搜索算法进行多线程路径规划的方法。该方法首先将模拟退火算法引入到搜索模式中,克服算法易陷入局部最优的问题;其次,通过结合多线程和路径随机拼接技术,将算法应用到路径规划中。仿真实验表明该算法无论在高维还是低维情况下都具有较好的全局收敛性,能够很好地满足在复杂动画环境下路径规划的要求。 展开更多
关键词 群体智能 群搜索优化算法 模拟退火算法 路径规划 群体动画
在线阅读 下载PDF
多特征融合的抑郁倾向识别方法 被引量:4
5
作者 周莹 王红 +1 位作者 任衍具 胡晓红 《计算机应用》 CSCD 北大核心 2019年第1期168-175,共8页
近些年,抑郁倾向趋于年轻化和常态化,虽然相关研究已取得一定成果,但仍缺乏更为客观、准确的抑郁倾向识别方法,也缺乏从不同角度研究抑郁倾向,因此,提出将心理健康自查表和眼动追踪结合作为识别抑郁倾向的方法,并且创新地从多角度对抑... 近些年,抑郁倾向趋于年轻化和常态化,虽然相关研究已取得一定成果,但仍缺乏更为客观、准确的抑郁倾向识别方法,也缺乏从不同角度研究抑郁倾向,因此,提出将心理健康自查表和眼动追踪结合作为识别抑郁倾向的方法,并且创新地从多角度对抑郁倾向进行研究,即将眼动特征、记忆力特征、认知风格特征以及网络行为特征多种类型特征融合。为了处理复杂的特征关系,提出扫描过程来处理复杂的特征关系,并将扫描过程与堆叠法结合提出抑郁倾向识别模型——扫描堆叠模型。为了全面客观评价扫描堆叠模型的性能,对扫描过程和堆叠法的独立贡献进行了实验。实验结果显示扫描过程独立贡献为0. 03,堆叠法独立贡献为0. 02,并且扫描堆叠模型与多种模型从参数R平方、均方误差、平均绝对误差进行比较,结果为扫描堆叠模型的预测效果较好。 展开更多
关键词 眼动追踪 抑郁倾向 多特征融合 扫描堆叠模型
在线阅读 下载PDF
基于加权颜色分层和纹理单元的图像检索算法 被引量:4
6
作者 翟铭晗 高玲 《计算机应用》 CSCD 北大核心 2016年第6期1668-1672,共5页
针对仅使用单一颜色或纹理特征并不能达到较好的图像检索效果的问题,提出了一种结合颜色和纹理特征的图像检索算法.首先,颜色微观部分利用颜色直方图,刻画每种颜色的像素占整个图像的比例;然后,宏观部分应用颜色熵和位平面熵分别对图像... 针对仅使用单一颜色或纹理特征并不能达到较好的图像检索效果的问题,提出了一种结合颜色和纹理特征的图像检索算法.首先,颜色微观部分利用颜色直方图,刻画每种颜色的像素占整个图像的比例;然后,宏观部分应用颜色熵和位平面熵分别对图像处理,其中位平面熵取特征较明显的前4层,并对每层的位平面熵加权;最后,根据定义的五种基本纹理结构基元中各像素点的颜色值和角度值,结合颜色特征,实现图像检索.实验结果表明,加权位平面熵和不加权位平面熵比较,在Corel-1000数据集上平均查准率和平均查全率分别提高10.01个百分点和1.2个百分点.结合颜色和纹理特征的图像检索算法与仅表现纹理特征的结构元素描述(SED)方法相比,在Corel-10000数据集上平均查准率和平均查全率分别提高4.3个百分点和2.1个百分点,有效地提高了图像检索效果. 展开更多
关键词 颜色直方图 颜色熵 位平面熵 纹理单元 图像检索
在线阅读 下载PDF
基于惩罚误差矩阵的同步预测无线体域网节能方法 被引量:2
7
作者 郑卓然 郑向伟 田杰 《计算机应用》 CSCD 北大核心 2019年第2期513-517,共5页
针对传统无线体域网(WBAN)预测模型对感知数据预测精度低、计算量大、能耗高的问题,提出一种基于惩罚误差矩阵的自适应三次指数平滑算法。首先在感知节点与路由节点之间建立轻量级预测模型,其次采用地毯式搜索方式对预测模型进行参数优... 针对传统无线体域网(WBAN)预测模型对感知数据预测精度低、计算量大、能耗高的问题,提出一种基于惩罚误差矩阵的自适应三次指数平滑算法。首先在感知节点与路由节点之间建立轻量级预测模型,其次采用地毯式搜索方式对预测模型进行参数优化处理,最后采用惩罚误差矩阵对预测模型参数作进一步的细粒化处理。实验结果表明,与Zig Bee协议相比,在1000时隙范围内,所提方法可节省12%左右的能量;而采用惩罚误差矩阵与地毯式搜索方式相比,预测精度提高了3. 306%。所提方法在有效降低计算复杂度的同时能进一步降低WBAN的能耗。 展开更多
关键词 无线体域网 惩罚误差矩阵 轻量级预测模型 地毯式搜索 体域网
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部