期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于Hadoop的区域健康大数据平台研究与设计
1
作者 单珂 孔祥龙 +1 位作者 张一鸣 张宏宽 《计算机应用与软件》 北大核心 2025年第4期8-12,共5页
为了存储、共享、应用以及挖掘出对居民健康更有价值的信息,该文设计一种基于Hadoop的区域健康大数据平台,通过数据采集将各卫生机构、体检机构等健康数据存储到前置库,通过数据治理、数据交换将医疗数据存储到标准库中,最后以数据服务... 为了存储、共享、应用以及挖掘出对居民健康更有价值的信息,该文设计一种基于Hadoop的区域健康大数据平台,通过数据采集将各卫生机构、体检机构等健康数据存储到前置库,通过数据治理、数据交换将医疗数据存储到标准库中,最后以数据服务的方式将数据共享开放出去,对医疗机构、体检机构、健康管理公司等提供健康大数据支撑,促进医学健康产品的研发,更好地为居民提供医疗健康服务,最终实现全生命周期的健康数据管理。 展开更多
关键词 医疗健康 大数据 数据交换 数据处理 数据采集
在线阅读 下载PDF
一种无源被动室内区域定位方法的研究 被引量:5
2
作者 李若南 李金宝 《计算机研究与发展》 EI CSCD 北大核心 2020年第7期1381-1392,共12页
室内区域定位在医疗养老、智慧大楼等领域有着广泛的应用.室内区域定位中最突出的问题是无线电信道效应的动态和不可预测性(如多径传播、信道衰落等)对接收信号强度(received signal strength, RSS)的干扰影响.为了降低无线电的干扰,提... 室内区域定位在医疗养老、智慧大楼等领域有着广泛的应用.室内区域定位中最突出的问题是无线电信道效应的动态和不可预测性(如多径传播、信道衰落等)对接收信号强度(received signal strength, RSS)的干扰影响.为了降低无线电的干扰,提出了一种新的基于注意力机制的CNN-BiLSTM的室内区域定位模型,该模型通过捕获粗细粒度特征与定位区域的对应关系来减弱RSS序列对信道变化的依赖.首先,利用卷积神经网络(convolutional neural network, CNN)学习捕捉RSS序列的特征来抽取区域中心点的细粒度特征.然后,利用双向长短时记忆(bidirectional long short-term memory, BiLSTM)网络的存储记忆特性,学习当前与过去RSS序列中隐含区域范围的粗粒度特征.最后,利用注意力机制,通过融合粗细粒度特征,建立RSS序列特征与区域位置的映射关系,获取区域位置信息.真实室内环境下区域定位的实验结果表明,与目前定位效果最好的网格区域综合概率定位模型相比,提出的方法在降低计算复杂度的同时提高了区域定位的准确度和对环境的适应能力. 展开更多
关键词 室内区域定位 注意力机制 接收信号强度 卷积神经网络 双向长短时记忆网络
在线阅读 下载PDF
心电信号降噪算法研究综述 被引量:1
3
作者 侯彦荣 刘瑞霞 +2 位作者 舒明雷 陈长芳 单珂 《计算机科学》 CSCD 北大核心 2023年第S01期238-248,共11页
心电信号(Electrocardiogram,ECG)作为识别人体心脏异常的重要指标,其最常见的一个处理问题是消除不必要的噪声。这些噪声会使干净信号失真,从而影响对人体心脏的诊断与分析。综述了5种不同的心电信号降噪技术框架以及在该框架下的最新... 心电信号(Electrocardiogram,ECG)作为识别人体心脏异常的重要指标,其最常见的一个处理问题是消除不必要的噪声。这些噪声会使干净信号失真,从而影响对人体心脏的诊断与分析。综述了5种不同的心电信号降噪技术框架以及在该框架下的最新研究成果,最后汇总了近5年优秀降噪模型,并通过信噪比等性能评价标准进行比较。对比显示,不管基于单一噪声或是复合噪声,深度学习模型在降噪方面均显现出良好性能。最后,讨论了当前降噪模型存在的不足,并对下一步研究进行了展望。 展开更多
关键词 心电信号 深度学习 降噪 信噪比
在线阅读 下载PDF
基于两阶段学习的多行为推荐 被引量:3
4
作者 严明时 程志勇 +2 位作者 孙静 王法胜 孙福明 《软件学报》 EI CSCD 北大核心 2024年第5期2446-2465,共20页
多行为推荐系统旨在利用用户多种行为的交互数据来提升系统的推荐性能.现有的多行为推荐方法通常将多行为数据直接作用于共享的初始化用户表征上,并在任务中糅合了对用户偏好的挖掘和对不同行为间联系的建模.然而,这些算法忽视了不同交... 多行为推荐系统旨在利用用户多种行为的交互数据来提升系统的推荐性能.现有的多行为推荐方法通常将多行为数据直接作用于共享的初始化用户表征上,并在任务中糅合了对用户偏好的挖掘和对不同行为间联系的建模.然而,这些算法忽视了不同交互行为中存在的数据不平衡问题(不同行为交互数据量差别较大)以及适配上述两种任务而引起的信息损失问题.事实上,用户偏好是指用户在不同行为中表现出来的喜好(例如,浏览的喜好),而各行为间的联系表现为用户偏好在不同行为间潜在的转化关系(例如,浏览转换为购买).在多行为推荐中,对用户偏好的挖掘和对行为间联系的建模可以看作两个阶段的任务.基于上述讨论,提出基于两阶段学习的多行为推荐.两阶段策略设计的优势是解耦了前述两种任务.两阶段策略采取固定参数交替训练的方式实现,并同时保留了模型端到端的结构.(1)第1阶段专注于不同行为下的用户偏好建模:先利用所有交互数据(不区分行为类别)对用户的全局喜好进行建模,以最大程度缓解数据稀疏性问题,再分别利用各行为的交互数据细化该特定行为下的用户偏好(局部偏好),以减轻不同行为之间的数据不平衡问题造成的影响.(2)第2阶段专注于对不同行为间联系的建模,通过解耦对用户偏好的挖掘和对不同行为间联系的建模,以缓解因适配两种任务而引起的信息损失问题.这种两阶段模式能够显著提升系统对目标行为的预测能力.大量实验结果表明,所提模型在性能上远优于最先进的基线模型,在Tmall和Beibei两个真实基准数据集上的性能提升平均可以达到103.01%和33.87%. 展开更多
关键词 多行为推荐 协同过滤 两阶段策略 图卷积网络 多任务学习
在线阅读 下载PDF
多尺度特征提取和多级别特征融合的显著性目标检测方法 被引量:8
5
作者 黎玲利 孟令兵 李金宝 《工程科学与技术》 EI CAS CSCD 北大核心 2021年第1期170-177,共8页
显著性目标检测已经被广泛应用到图像检索、图像分割、行人重识别等领域。目前主流的显著性目标检测方法通常采用短连接加权的方式融合多级别特征信息,这种方式无法精准有效地控制信息流的传递。而且,现有的检测方法通常采用单一的特征... 显著性目标检测已经被广泛应用到图像检索、图像分割、行人重识别等领域。目前主流的显著性目标检测方法通常采用短连接加权的方式融合多级别特征信息,这种方式无法精准有效地控制信息流的传递。而且,现有的检测方法通常采用单一的特征检测,导致显著性目标区域与背景的边界不连续、易模糊。因此,本文提出一种多尺度特征提取和多级别特征融合的显著性目标检测方法。首先,利用不同扩张率的空洞卷积获取多尺度的上下文信息,弥补单一特征检测带来的不足。其次,提出一个多级别特征融合模块,该模块有效地利用浅层特征信息、深层特征信息和全局上下文特征信息之间的分布特性进行融合,不仅可以抑制噪声的传递,而且可以更有效地恢复显著性目标的空间细节结构信息。同时构建一个简洁的注意力模块,该模块有效保留特征图融合后的通道信息。本文对综合指标、平均绝对误差、结构化度量、精确率-召回率曲线和F-measure曲线进行了实验评估,在5个公开的数据集上进行的实验结果表明:相比于其他13种主流的检测方法,本文方法在不同的评估指标上均有明显的提升,在4个数据集上的综合指标和结构化度量指标均超过其他方法;并且,本文方法的可视化检测的显著图边缘轮廓连续性更好,空间结构细节信息更清晰。 展开更多
关键词 显著性检测 多尺度特征提取 多级别特征融合 显著图 深度学习
在线阅读 下载PDF
基于残差网络的三维模型检索算法 被引量:3
6
作者 李荫民 薛凯心 +3 位作者 高赞 薛彦兵 徐光平 张桦 《计算机科学》 CSCD 北大核心 2019年第3期148-153,共6页
近年来,基于视图的3D模型检索已经成为计算机视觉领域的重点研究方向。3D模型检索算法包括特征提取和检索算法两个部分,且鲁棒的特征对于检索算法起着决定性的作用。目前,研究者们已经提出了许多人工设计特征和深度学习特征,但是很少有... 近年来,基于视图的3D模型检索已经成为计算机视觉领域的重点研究方向。3D模型检索算法包括特征提取和检索算法两个部分,且鲁棒的特征对于检索算法起着决定性的作用。目前,研究者们已经提出了许多人工设计特征和深度学习特征,但是很少有人比较它们的异同。因此,文中对不同的人工设计特征和深度学习特征的性能进行了评估分析,基于充分对比的前提,采用了多个数据集、多样的评价标准和不同的检索算法进行了实验,并进一步比较了深度网络不同层特征对性能的影响,从而提出了基于残差网络的三维模型检索算法。在多个公开数据集上的实验表明:1)残差网络所提取的深度特征相较于传统特征,综合性能提升了1%~20%;2)与VGG网络所提取的深度特征相比,残差网络的综合性能提升了1%~5%;3)VGG网络中不同层特征的性能也有差异,深层特征与浅层特征相比,综合性能提升了1%~6%;4)随着网络深度的增加,残差网络所提取的特征的综合性能得到了有限提高,且比其他对比特征均更加鲁棒。 展开更多
关键词 3D模型检索 特征提取 人工特征 深度特征 残差网络
在线阅读 下载PDF
基于脑电通道动态选择方法的癫痫检测 被引量:3
7
作者 汝彦冬 李金宝 +2 位作者 吕兴凤 赵彩虹 齐景嘉 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第2期180-188,共9页
在癫痫检测任务中,脑电信号的通道选择直接影响检测性能。针对静态通道选择方法中脑电信号部分时段癫痫检测能力不足的问题,提出了动态通道选择方法。根据通道位置和脑电信号功率谱密度确定通道集合,选择通道集合中癫痫检测能力最强的... 在癫痫检测任务中,脑电信号的通道选择直接影响检测性能。针对静态通道选择方法中脑电信号部分时段癫痫检测能力不足的问题,提出了动态通道选择方法。根据通道位置和脑电信号功率谱密度确定通道集合,选择通道集合中癫痫检测能力最强的一路通道作为特征提取通道,通过提高局部癫痫检测能力,进而提高整体检测能力。实验结果表明,提出的动态通道选择方法检测癫痫,取得了98.99%精确度、98.52%敏感度和99.52%特异度的较好性能。与多通道相比,检测性能相近,但特征提取通道最少,时间复杂度减少到O(1)。与单通道相比,精确度、敏感度和特异度性能指标提高4.93%以上。 展开更多
关键词 癫痫检测 动态通道选择 脑电信号 随机森林
在线阅读 下载PDF
密集连接扩张卷积神经网络的单幅图像去雾 被引量:8
8
作者 刘广洲 李金宝 +1 位作者 任东东 舒明雷 《计算机科学与探索》 CSCD 北大核心 2021年第1期185-194,共10页
针对大多数图像去雾算法模型参数估计准确性差及色彩失真等问题,提出了一种端到端的密集连接扩张卷积神经网络。首先,通过使用多层密集连接结构来增加网络的特征利用率,避免网络加深时的梯度消失现象。其次,通过在密集块中使用不同扩张... 针对大多数图像去雾算法模型参数估计准确性差及色彩失真等问题,提出了一种端到端的密集连接扩张卷积神经网络。首先,通过使用多层密集连接结构来增加网络的特征利用率,避免网络加深时的梯度消失现象。其次,通过在密集块中使用不同扩张率的扩张卷积,使网络在充分聚合上下文特征信息时不损失空间分辨率,并避免了网格伪影的产生。最后,为了提高算法的去雾能力,将该网络划分为多个阶段,并在每个阶段引入侧输出模块,从而获得更精确的特征信息。实验结果表明,所提出的去雾算法无论是在合成数据集上还是在真实数据集上都取得了较好的去雾效果,恢复的色彩更接近无雾图像,并且定量评价指标峰值信噪比(PSNR)和结构相似性(SSIM)均优于其他对比方法。 展开更多
关键词 图像去雾 卷积神经网络(CNN) 密集连接 扩张卷积
在线阅读 下载PDF
多特征信息融合LSTM-RNN检测OSA方法 被引量:9
9
作者 朱兆坤 李金宝 《计算机研究与发展》 EI CSCD 北大核心 2020年第12期2547-2555,共9页
阻塞性睡眠呼吸暂停(obstructive sleep apnea,OSA)是最常见的睡眠呼吸疾病,它对人体的很多生理系统尤其对心血管系统是一个潜在的威胁.现有使用心电信号(electrocardiograph,ECG)提取浅层特征检测OSA的方法在长片段、高噪声的ECG信号... 阻塞性睡眠呼吸暂停(obstructive sleep apnea,OSA)是最常见的睡眠呼吸疾病,它对人体的很多生理系统尤其对心血管系统是一个潜在的威胁.现有使用心电信号(electrocardiograph,ECG)提取浅层特征检测OSA的方法在长片段、高噪声的ECG信号和大数据集上表现较差.针对上述问题,提出一种多特征心电信号融合的长短期记忆循环神经网络,融合从ECG信号中提取的多种浅层特征信号,通过在融合信号上学习深层特征来检测OSA,提升模型在长片段ECG上的检测准确率和大数据集上的泛化能力.同时还针对浅层特征信号提出一种有效的数据预处理方法,用以突出OSA的时序变化,提高神经网络训练的收敛性,并降低由异常值噪声带来的影响,进一步提升模型在高噪声ECG片段上的检测准确率.实验证明:提出的方法在片段OSA检测准确率上优于已有的方法. 展开更多
关键词 阻塞性睡眠呼吸暂停 心电信号 预处理 长短时记忆 循环神经网络
在线阅读 下载PDF
融合用户感知和多因素的兴趣点推荐
10
作者 卢巧杰 王楠 +1 位作者 李金宝 李坤 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第2期310-319,共10页
针对传统的基于协同过滤的兴趣点(POI)推荐方法存在数据稀疏问题和现有工作往往单纯利用上下文信息却没有合理平衡各因素的作用影响的问题,提出融合用户感知和多因素的兴趣点推荐模型(UPMF).为基于用户感知的隐式建模提取用户相似性以... 针对传统的基于协同过滤的兴趣点(POI)推荐方法存在数据稀疏问题和现有工作往往单纯利用上下文信息却没有合理平衡各因素的作用影响的问题,提出融合用户感知和多因素的兴趣点推荐模型(UPMF).为基于用户感知的隐式建模提取用户相似性以丰富用户表示,并利用序列、地理和社交等上下文信息构建用户感知协同影响的POI推荐模型,缓解数据稀疏问题.设计新颖的用户感知的融合策略(UPIS),在基于用户感知的同时合理利用各种上下文信息挖掘用户的动态偏好.提出基于分段的活动区域选择算法针对不同活动区域对用户的影响进行建模.实验结果表明,与其他流行的POI推荐方法相比,UPMF在准确率、召回率和归一化折损累计增益(NDCG) 3个评价标准上都有一定程度的提高.在Gowalla和Yelp数据集上,UPMF模型的NDCG@10比SUCP的分别高12.77%、7.24%. 展开更多
关键词 社交网络 兴趣点(POI)推荐 用户感知 隐式反馈 多因素
在线阅读 下载PDF
基于双重属性信息的跨模态行人重识别算法 被引量:2
11
作者 陈琳 高赞 +2 位作者 宋雪萌 王英龙 聂礼强 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第4期647-656,共10页
通过对跨模态检索问题的研究,属性信息的使用可以增强所提取特征的语义表达性,但现有基于自然语言的跨模态行人重识别算法对行人图片和文本的属性信息利用不够充分。基于双重属性信息的跨模态行人重识别算法充分考虑了行人图片和文本描... 通过对跨模态检索问题的研究,属性信息的使用可以增强所提取特征的语义表达性,但现有基于自然语言的跨模态行人重识别算法对行人图片和文本的属性信息利用不够充分。基于双重属性信息的跨模态行人重识别算法充分考虑了行人图片和文本描述的属性信息,构建了基于文本属性和图片属性的双重属性空间,并通过构建基于隐空间和属性空间的跨模态行人重识别端到端网络,提高了所提取图文特征的可区分性和语义表达性。跨模态行人重识别数据集CUHK-PEDES上的实验评估表明,所提算法的检索准确率Top-1达到了56.42%,与CMAAM算法的Top-1(56.68%)具有可比性,Top-5、Top-10相比CMAAM算法分别提升了0.45%、0.29%。针对待检索图片库中可能存在身份标签的应用场景,利用行人的类别信息提取属性特征,可以较大幅度提高跨模态行人图片的检索准确率,Top-1达到64.88%。消融实验证明了所提算法使用的文本属性和图片属性的重要性及基于双重属性空间的有效性。 展开更多
关键词 跨模态检索 匹配算法 行人属性信息 特征表示 特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部