期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进多元多尺度加权排列熵的齿轮箱故障诊断 被引量:5
1
作者 赵家浩 廖晓娟 唐锡雷 《组合机床与自动化加工技术》 北大核心 2022年第12期48-52,共5页
齿轮箱振动存在多个传递路径,而典型齿轮箱故障诊断方法一般使用单个路径的单通道振动信号,易造成其它通道信息的遗漏。为充分利用不同路径振动信号故障信息,增强故障特征的质量,引入了多元多尺度加权排列熵,对其粗粒化方式进行了完善,... 齿轮箱振动存在多个传递路径,而典型齿轮箱故障诊断方法一般使用单个路径的单通道振动信号,易造成其它通道信息的遗漏。为充分利用不同路径振动信号故障信息,增强故障特征的质量,引入了多元多尺度加权排列熵,对其粗粒化方式进行了完善,提出了改进多元多尺度加权排列熵(IMMWPE),实现齿轮箱多通道振动信号的故障特征提取。基于此,提出了一种结合IMMWPE、成对邻近特征和粒子群优化支持向量机的齿轮箱故障诊断方法。通过齿轮箱多通道数据分析,将其与多元多尺度样本熵、多元多尺度排列熵和多元多尺度模糊熵等方法进行对比,结果证明该方法能够准确识别齿轮箱的各类故障,而且优于对比方法。 展开更多
关键词 齿轮箱 改进多元多尺度加权排列熵 成对邻近特征 故障诊断
在线阅读 下载PDF
基于ALIF和TMFDE的滚动轴承故障诊断研究 被引量:1
2
作者 赵家浩 罗娜 梁永文 《制造技术与机床》 北大核心 2023年第7期9-15,共7页
为了提高滚动轴承的故障识别精度,提出了一种基于自适应局部迭代滤波(ALIF)和时移多尺度波动散布熵(TMFDE)的故障诊断方法。首先,利用ALIF对滚动轴承振动信号进行分解,获得一组IMF分量。其次,为了获得更集成的IMF分量,基于能量法评估各... 为了提高滚动轴承的故障识别精度,提出了一种基于自适应局部迭代滤波(ALIF)和时移多尺度波动散布熵(TMFDE)的故障诊断方法。首先,利用ALIF对滚动轴承振动信号进行分解,获得一组IMF分量。其次,为了获得更集成的IMF分量,基于能量法评估各IMF分量的重要性,将前3阶分量视为有效分量。接着,利用TMFDE量化有效分量中的特征信息,构建故障特征向量。最后,将故障特征输入至粒子群优化的极限学习机中进行故障识别。利用东南大学的滚动轴承数据对该方法进行了评估,结果表明该方法能够准确地识别故障的类型,与其他方法相比,该方法在数据量较少时仍然具有优异的稳定性。 展开更多
关键词 自适应局部迭代滤波 时移多尺度波动散布熵 能量法 滚动轴承 故障检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部