针对眼底图像中存在大量不规则、噪声干扰严重、边界模糊、分割难度较大的细小血管的问题,提出一种基于多方向特征和连通性检测的眼底图像分割方法MDF_Net&CD(Multi-Directional Features neural Network and Connectivity Detecti...针对眼底图像中存在大量不规则、噪声干扰严重、边界模糊、分割难度较大的细小血管的问题,提出一种基于多方向特征和连通性检测的眼底图像分割方法MDF_Net&CD(Multi-Directional Features neural Network and Connectivity Detection)。设计了一个以像素点不同方向特征向量为输入的深度神经网络模型MDF_Net(Multi-Directional Features neural Network),利用MDF_Net对眼底图像进行初步分割;提出连通性检测算法,根据血管的几何特征,对MDF_Net的初步分割结果进一步修订。在公开的眼底图像数据集上,将MDF_Net&CD与近期有代表性的分割方法进行实验对比,结果表明MDF_Net&CD各项评估指标均衡,敏感度,F1值和准确率优于其他方法。该方法能有效捕捉像素点的细节特征,对不规则、噪声干扰严重、边界模糊的细小血管有较好分割效果。展开更多
将目标分割技术引入跟踪领域是当前的研究热点.目前,基于分割的跟踪算法往往根据分割结果计算最小外接矩形,以此作为跟踪框,但复杂的目标运动使得跟踪框内包含较多背景,从而导致精度下降.针对该问题,本文提出了一种基于前景优化的视觉...将目标分割技术引入跟踪领域是当前的研究热点.目前,基于分割的跟踪算法往往根据分割结果计算最小外接矩形,以此作为跟踪框,但复杂的目标运动使得跟踪框内包含较多背景,从而导致精度下降.针对该问题,本文提出了一种基于前景优化的视觉目标跟踪算法,将跟踪框的尺度和角度优化统一于前景优化框架中.首先评估跟踪框内的前景比例,若小于设定阈值,则对跟踪框分别进行尺度和角度优化;在尺度优化模块中,结合回归框计算跟踪框的条件概率,根据条件概率的结果分情形进行尺度优化;角度优化模块中,针对跟踪框设定多个偏移角度,利用前景IoU(Intersection over Union)极大策略选择最优跟踪框角度.结果证明,将本文方法应用于SiamMask算法,精度在VOT2016,VOT2018和VOT2019数据集分别提升约3.2%,3.7%和3.6%,而EAO分别提升约1.8%,1.9%和1.6%.另外,本文的方法针对基于分割的跟踪算法具有一定的普适性.展开更多
文摘针对眼底图像中存在大量不规则、噪声干扰严重、边界模糊、分割难度较大的细小血管的问题,提出一种基于多方向特征和连通性检测的眼底图像分割方法MDF_Net&CD(Multi-Directional Features neural Network and Connectivity Detection)。设计了一个以像素点不同方向特征向量为输入的深度神经网络模型MDF_Net(Multi-Directional Features neural Network),利用MDF_Net对眼底图像进行初步分割;提出连通性检测算法,根据血管的几何特征,对MDF_Net的初步分割结果进一步修订。在公开的眼底图像数据集上,将MDF_Net&CD与近期有代表性的分割方法进行实验对比,结果表明MDF_Net&CD各项评估指标均衡,敏感度,F1值和准确率优于其他方法。该方法能有效捕捉像素点的细节特征,对不规则、噪声干扰严重、边界模糊的细小血管有较好分割效果。
文摘将目标分割技术引入跟踪领域是当前的研究热点.目前,基于分割的跟踪算法往往根据分割结果计算最小外接矩形,以此作为跟踪框,但复杂的目标运动使得跟踪框内包含较多背景,从而导致精度下降.针对该问题,本文提出了一种基于前景优化的视觉目标跟踪算法,将跟踪框的尺度和角度优化统一于前景优化框架中.首先评估跟踪框内的前景比例,若小于设定阈值,则对跟踪框分别进行尺度和角度优化;在尺度优化模块中,结合回归框计算跟踪框的条件概率,根据条件概率的结果分情形进行尺度优化;角度优化模块中,针对跟踪框设定多个偏移角度,利用前景IoU(Intersection over Union)极大策略选择最优跟踪框角度.结果证明,将本文方法应用于SiamMask算法,精度在VOT2016,VOT2018和VOT2019数据集分别提升约3.2%,3.7%和3.6%,而EAO分别提升约1.8%,1.9%和1.6%.另外,本文的方法针对基于分割的跟踪算法具有一定的普适性.
文摘当目标领域缺少足够多的标注数据时,迁移学习利用相关源领域的标注数据,辅助提升目标域的学习性能,但是目标域与源域的数据通常不满足独立同分布,容易导致“负迁移”问题.本文在有监督主题模型(Supervised LDA,SLDA)的基础上,融合迁移学习方法提出一种共享主题知识的迁移主题模型(Transfer SLDA,Tr-SLDA),提出Tr-SLDA-Gibbs主题采样新方法,在类别标签的约束下对不同领域文档中的词采取不同的采样策略,且无需指定主题个数.辅助源域与目标域共享潜在主题空间,Tr-SLDA通过发现潜在共享主题与不同领域类别之间的语义关联从源域迁移知识,可以有效解决“负迁移”问题.基于Tr-SLDA迁移主题模型提出Tr-SLDA-TC(Tr-SLDA Text Categorization)文本分类方法.对比实验表明,该方法可有效利用源域知识来提高目标领域的分类性能.