期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进长短记忆神经网络的深层致密储层裂缝测井识别
1
作者
张涛
李艳萍
+2 位作者
李泽凯
刘东成
王静
《地学前缘》
北大核心
2025年第5期456-465,共10页
辽河坳陷中央凸起深层致密基岩潜山发育裂缝性油气储层,资源潜力巨大,但埋深大、岩性多样,裂缝与测井参数间映射关系复杂,裂缝测井识别多解性强,准确率低。针对以上问题,本文对长短记忆神经网络算法(LSTM)进行改进用于深层潜山地层裂缝...
辽河坳陷中央凸起深层致密基岩潜山发育裂缝性油气储层,资源潜力巨大,但埋深大、岩性多样,裂缝与测井参数间映射关系复杂,裂缝测井识别多解性强,准确率低。针对以上问题,本文对长短记忆神经网络算法(LSTM)进行改进用于深层潜山地层裂缝测井识别,在双层LSTM之间增加Dropout层,通过正则化防止过拟合,引入采用高斯核函数的最小二乘支持向量机(LSSVM)将LSTM中的Dense层和用于分类的Softmax函数进行替换,直接对LSTM层所提取的特征成分进行分类预测,在保留了长短记忆神经网络算法对测井曲线的序列性学习优势基础上,有效提升了分类预测效率和准确性,避免了裂缝特征信息的丢失以及对小样本训练数据的过度拟合,增强了算法的快速收敛能力。结果显示,测试集准确率达91.56%,识别准确率高于支持向量机和标准长短记忆神经网络模型,为深层复杂岩性基岩潜山储层裂缝识别提供了高效解决方案。
展开更多
关键词
深层
基岩潜山
改进长短记忆神经网络
裂缝识别
在线阅读
下载PDF
职称材料
题名
基于改进长短记忆神经网络的深层致密储层裂缝测井识别
1
作者
张涛
李艳萍
李泽凯
刘东成
王静
机构
山东
科技大学地球科学与工程学院
山东地勘产业发展集团有限公司
中石油大港油田分
公司
勘探开发研究院
出处
《地学前缘》
北大核心
2025年第5期456-465,共10页
基金
国家自然科学基金项目(41602135)
山东科技大学群星计划项目(QX2022M12)。
文摘
辽河坳陷中央凸起深层致密基岩潜山发育裂缝性油气储层,资源潜力巨大,但埋深大、岩性多样,裂缝与测井参数间映射关系复杂,裂缝测井识别多解性强,准确率低。针对以上问题,本文对长短记忆神经网络算法(LSTM)进行改进用于深层潜山地层裂缝测井识别,在双层LSTM之间增加Dropout层,通过正则化防止过拟合,引入采用高斯核函数的最小二乘支持向量机(LSSVM)将LSTM中的Dense层和用于分类的Softmax函数进行替换,直接对LSTM层所提取的特征成分进行分类预测,在保留了长短记忆神经网络算法对测井曲线的序列性学习优势基础上,有效提升了分类预测效率和准确性,避免了裂缝特征信息的丢失以及对小样本训练数据的过度拟合,增强了算法的快速收敛能力。结果显示,测试集准确率达91.56%,识别准确率高于支持向量机和标准长短记忆神经网络模型,为深层复杂岩性基岩潜山储层裂缝识别提供了高效解决方案。
关键词
深层
基岩潜山
改进长短记忆神经网络
裂缝识别
Keywords
deep layer
base rock buried hill
Improved Long Short-Term Memory(LSTM)neural network
fracture identification
分类号
P618.13 [天文地球—矿床学]
P631.81 [天文地球—地质矿产勘探]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进长短记忆神经网络的深层致密储层裂缝测井识别
张涛
李艳萍
李泽凯
刘东成
王静
《地学前缘》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部