采用拓展紧束缚Su-Schrieffer-Heeger(SSH)模型,研究了链间耦合对反式聚乙炔多链体系中电子极化子再激发态的晶格位形、净电荷密度、局域能级波函数和态密度的影响.结果发现:对于两条链体系,当链间耦合很小(t⊥≤0.01 e V)时,注入到系...采用拓展紧束缚Su-Schrieffer-Heeger(SSH)模型,研究了链间耦合对反式聚乙炔多链体系中电子极化子再激发态的晶格位形、净电荷密度、局域能级波函数和态密度的影响.结果发现:对于两条链体系,当链间耦合很小(t⊥≤0.01 e V)时,注入到系统中的电子只会在第一条链上诱发产生一个晶格缺陷,形成电子极化子再激发态,这和单链体系是一致,而第二条链仍是二聚化基态.随着链间耦合的增大,第一条链上缺陷的局域度减少而第二条链上的缺陷局域度相应增加,直至两条链上的位形相同;对于多条链(5条链和6条链)体系,当耦合很小(t⊥≤0.05 e V)时,电子极化子再激发态也只会存在于一条链上,当链间耦合较强时,极化子再激发态会在链间层次性地扩展开来,并不会出现多条链位形相同;从两条链的能级图上可以看到随着链间耦合t⊥的增大,体系的带隙不断的增大和电子态密度显示的是完全吻合的,体系的导电性减弱.通过分析两条链体系在t⊥=0 e V和t⊥=0.1 e V的能级态密度,发现链间耦合越强,则中间局域能级的态密度越小,最后没有中间局域态.展开更多
利用第一性原理赝势平面波方法计算了杂质(X=C,Al)掺杂新型二维材料磷烯的结构参数、能带结构、Mulliken布居分析、差分电荷密度以及光学性质。结果表明杂质掺杂后磷烯材料的结构发生了畸变,但是掺杂体系的结构是稳定的。C掺杂后,费米...利用第一性原理赝势平面波方法计算了杂质(X=C,Al)掺杂新型二维材料磷烯的结构参数、能带结构、Mulliken布居分析、差分电荷密度以及光学性质。结果表明杂质掺杂后磷烯材料的结构发生了畸变,但是掺杂体系的结构是稳定的。C掺杂后,费米能级进入价带中,带隙变窄,变为0.826 e V的直接带隙;Al掺杂后,体系变为间接带隙半导体,带隙略有展宽,带隙为0.965 eV。Mulliken布居分析和差分电荷密度的分析都表明掺杂后体系的电荷分布发生了转移,C原子附近出现了电荷积累,而Al原子附近出现了电荷消耗。在(100)极化方向上的光学性质计算表明:在红光及红外线的范围内,C掺杂后磷烯材料储存电磁能的能力有所减弱,而Al掺杂后储存电磁能的能力有所增强;C掺杂后折射率n0减小,Al掺杂后折射率n0增大;吸收系数和反射率峰值均降低;掺杂前后磷烯材料都可作为光储存材料。以上结果说明采用不同杂质掺杂可以调制磷烯材料的光电性质。展开更多
文摘采用拓展紧束缚Su-Schrieffer-Heeger(SSH)模型,研究了链间耦合对反式聚乙炔多链体系中电子极化子再激发态的晶格位形、净电荷密度、局域能级波函数和态密度的影响.结果发现:对于两条链体系,当链间耦合很小(t⊥≤0.01 e V)时,注入到系统中的电子只会在第一条链上诱发产生一个晶格缺陷,形成电子极化子再激发态,这和单链体系是一致,而第二条链仍是二聚化基态.随着链间耦合的增大,第一条链上缺陷的局域度减少而第二条链上的缺陷局域度相应增加,直至两条链上的位形相同;对于多条链(5条链和6条链)体系,当耦合很小(t⊥≤0.05 e V)时,电子极化子再激发态也只会存在于一条链上,当链间耦合较强时,极化子再激发态会在链间层次性地扩展开来,并不会出现多条链位形相同;从两条链的能级图上可以看到随着链间耦合t⊥的增大,体系的带隙不断的增大和电子态密度显示的是完全吻合的,体系的导电性减弱.通过分析两条链体系在t⊥=0 e V和t⊥=0.1 e V的能级态密度,发现链间耦合越强,则中间局域能级的态密度越小,最后没有中间局域态.
文摘利用第一性原理赝势平面波方法计算了杂质(X=C,Al)掺杂新型二维材料磷烯的结构参数、能带结构、Mulliken布居分析、差分电荷密度以及光学性质。结果表明杂质掺杂后磷烯材料的结构发生了畸变,但是掺杂体系的结构是稳定的。C掺杂后,费米能级进入价带中,带隙变窄,变为0.826 e V的直接带隙;Al掺杂后,体系变为间接带隙半导体,带隙略有展宽,带隙为0.965 eV。Mulliken布居分析和差分电荷密度的分析都表明掺杂后体系的电荷分布发生了转移,C原子附近出现了电荷积累,而Al原子附近出现了电荷消耗。在(100)极化方向上的光学性质计算表明:在红光及红外线的范围内,C掺杂后磷烯材料储存电磁能的能力有所减弱,而Al掺杂后储存电磁能的能力有所增强;C掺杂后折射率n0减小,Al掺杂后折射率n0增大;吸收系数和反射率峰值均降低;掺杂前后磷烯材料都可作为光储存材料。以上结果说明采用不同杂质掺杂可以调制磷烯材料的光电性质。