期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于声信号的离心泵故障诊断研究 被引量:6
1
作者 陈剑 姜涛 陈品 《电子测量与仪器学报》 CSCD 北大核心 2024年第5期169-177,共9页
各种原因使得工业现场设备状态监测的首选测量信号是声信号时,提出一种基于声信号的设备状态监测方法显得尤为必要。以某型离心泵为依据对象,对现场采集的声信号提取梅尔倒谱系数(MFCC)作为信号的初始特征,然后计算这些MFCC初始特征的... 各种原因使得工业现场设备状态监测的首选测量信号是声信号时,提出一种基于声信号的设备状态监测方法显得尤为必要。以某型离心泵为依据对象,对现场采集的声信号提取梅尔倒谱系数(MFCC)作为信号的初始特征,然后计算这些MFCC初始特征的散布熵(DE)值,并通过主成分分析法(PCA)对矩阵进行降维,从而构造特征矩阵。利用蝙蝠优化算法(BA)对支持向量机(SVM)的惩罚系数与核函数参数进行优化,对离心泵的多种故障工况开展诊断,并与多种诊断方法进行比较。实验结果表明,经过BA优化后的模型在诊断准确率上提高了21.7%;在该模型的基础上利用DE对MFCC提取的信号进行深度挖掘,使模型诊断的准确率提高2.05%。 展开更多
关键词 离心泵故障诊断 声信号 梅尔倒谱散布熵 蝙蝠优化算法 支持向量机
在线阅读 下载PDF
基于贝叶斯优化多尺度DenseNet的离心泵声信号故障诊断方法
2
作者 陈剑 严明辉 陈品 《中国机械工程》 北大核心 2025年第9期2032-2038,共7页
由于一维特征向量不能保留时间特征信息,而神经网络对图像识别具有良好效果,因此尝试用离心泵故障声信号构建的图像数据集开展离心泵故障诊断,提出贝叶斯优化多尺度DenseNet的离心泵声信号故障诊断方法。将一维时间序列声信号经过格拉... 由于一维特征向量不能保留时间特征信息,而神经网络对图像识别具有良好效果,因此尝试用离心泵故障声信号构建的图像数据集开展离心泵故障诊断,提出贝叶斯优化多尺度DenseNet的离心泵声信号故障诊断方法。将一维时间序列声信号经过格拉姆角场转化为二维图像,保留其时间信息及故障特征;然后采用多尺度密集块对图像进行特征提取,增强图像特征复用;通过dropout层和L_(2)正则化方法防止过拟合,采用贝叶斯优化算法确定神经网络超参数,最后利用离心泵声信号进行实验验证,与其他诊断方法进行对比。结果表明,贝叶斯优化多尺度DenseNet的诊断模型对测试集具有99.5%的故障识别率。 展开更多
关键词 离心泵 故障诊断 格拉姆角场 贝叶斯优化 多尺度DenseNet
在线阅读 下载PDF
基于声振特征融合和改进级联森林的离心泵故障诊断 被引量:1
3
作者 厉强国 陈品 陈剑 《组合机床与自动化加工技术》 北大核心 2025年第2期217-221,共5页
针对故障诊断中单一来源信号特征信息表征不充分以及深度神经网络调参复杂、构建难度大等问题,提出了一种基于声振特征融合和改进级联森林的离心泵故障诊断方法。首先,对多个传感器采集的声振信号进行小波包去噪,提取降噪信号的时域特... 针对故障诊断中单一来源信号特征信息表征不充分以及深度神经网络调参复杂、构建难度大等问题,提出了一种基于声振特征融合和改进级联森林的离心泵故障诊断方法。首先,对多个传感器采集的声振信号进行小波包去噪,提取降噪信号的时域特征、频域特征和小波包能量特征。利用核主成分分析(kernel principal component analysis,KPCA)对声振信号特征进行特征融合与数据降维,得到特征矩阵。在深度级联森林的基础上引入极端随机森林构建级联层,并添加XGBoost预测器提升模型性能,得到改进级联森林模型。利用改进的级联森林模型进行故障分类,试验结果表明,该方法能够有效识别离心泵的故障类型,并且声振信号特征融合相比于单源信号特征能够有效提升诊断精度。 展开更多
关键词 离心泵 故障诊断 特征提取 声振融合 改进级联森林
在线阅读 下载PDF
基于声信号的滚动轴承故障诊断研究 被引量:7
4
作者 陈剑 徐庭亮 +4 位作者 黄志 孙太华 李雪原 季磊 杨惠杰 《振动与冲击》 EI CSCD 北大核心 2023年第21期237-244,共8页
结合小波包短时能量散布熵、回溯搜索算法以及学习矢量神经网络,提出一种基于声信号的滚动轴承故障诊断新方法。首先利用小波包分解结合短时能量对声信号进行脉冲能量提取,突出与故障相关的时频子空间的能量分布,再通过计算各子空间短... 结合小波包短时能量散布熵、回溯搜索算法以及学习矢量神经网络,提出一种基于声信号的滚动轴承故障诊断新方法。首先利用小波包分解结合短时能量对声信号进行脉冲能量提取,突出与故障相关的时频子空间的能量分布,再通过计算各子空间短时能量序列的散布熵,构造特征矩阵。利用t-分布随机邻域嵌入方法对所获特征进行降维聚类,显示所提取的特征具有较好的聚类性能。然后采用回溯搜索算法优化学习矢量量化建立神经网络故障诊断模型,对轴承故障进行识别,并与多种诊断方法进行比较,试验结果表明,加入短时能量散布熵后,本模型提升了声信号的能量特性,优化了特征矩阵,诊断性能最佳。 展开更多
关键词 轴承故障诊断 声信号 短时能量散布熵 学习矢量量化 回溯搜索算法
在线阅读 下载PDF
基于改进二进制粒子群算法优化DBN的轴承故障诊断 被引量:4
5
作者 陈剑 黄志 +2 位作者 徐庭亮 孙太华 李雪原 《组合机床与自动化加工技术》 北大核心 2024年第1期168-173,共6页
针对滚动轴承故障振动信号非平稳性的特点,对二进制粒子群优化算法(binary particles swarm optimization,BPSO)和深度信念网络(deep belief network,DBN)进行研究,提出一种基于局部均值分解(local mean decomposition,LMD)和IBPSO-DBN... 针对滚动轴承故障振动信号非平稳性的特点,对二进制粒子群优化算法(binary particles swarm optimization,BPSO)和深度信念网络(deep belief network,DBN)进行研究,提出一种基于局部均值分解(local mean decomposition,LMD)和IBPSO-DBN的轴承故障诊断方法。提出用加权惯性权重改进BPSO迭代过程中的固定权重,再用改进BPSO优化DBN的隐含层神经元个数和学习率。该方法先对信号进行LMD,提取出各PF分量的散布熵和时域指标,并构建特征矩阵,然后把特征矩阵输入改进BPSO-DBN模型中训练,实现滚动轴承故障诊断和分类。采用试验轴承数据做验证并与其他诊断方法对比,结果表明,基于LMD和BPSO-DBN的滚动轴承故障诊断方法具有较好的故障识别率。 展开更多
关键词 局部均值分解 二进制粒子群优化算法 深度置信网络 滚动轴承故障诊断
在线阅读 下载PDF
基于SVD-VMD和SVM滚动轴承故障诊断方法 被引量:19
6
作者 陈剑 阚东 +1 位作者 孙太华 张磊 《电子测量与仪器学报》 CSCD 北大核心 2022年第1期220-226,共7页
针对故障滚动轴承振动信号中含有干扰信号,难以准确提取出故障信息,提出了一种基于奇异值分解(SVD)、变分模态分解(VMD)、和支持向量机(SVM)的滚动轴承故障诊断方法。首先利用奇异值分解对信号进行处理,根据奇异值峰度差分谱来确定分解... 针对故障滚动轴承振动信号中含有干扰信号,难以准确提取出故障信息,提出了一种基于奇异值分解(SVD)、变分模态分解(VMD)、和支持向量机(SVM)的滚动轴承故障诊断方法。首先利用奇异值分解对信号进行处理,根据奇异值峰度差分谱来确定分解后重构矩阵的有效阶数,然后根据该有效阶数重构信号,对重构后的信号进行VMD分解,根据上述有效阶数确定分解的本征模态函数(IMF)分量的个数,从分解后的IMF分量中提取故障特征参数,将其作为支持向量机的输入参数进行故障诊断。最后采用合肥工业大学轴承试验机进行验证,并与直接进VMD分解及基于带通滤波器信号去噪的故障诊断方法进行对比,结果表明该方法能有效识别滚动轴承的故障类型,可用于滚动轴承故障诊断。 展开更多
关键词 故障诊断 奇异值峰度差分谱 变分模态分解 故障特征提取 信号降噪
在线阅读 下载PDF
基于tSNE-ASC特征选择和DSmT融合决策的滚动轴承声振信号故障诊断 被引量:11
7
作者 陈剑 程明 《电子测量与仪器学报》 CSCD 北大核心 2022年第4期195-204,共10页
针对滚动轴承早期故障特征微弱且难以有效辨识的问题,提出一种基于tSNE-ASC特征选择和DSmT融合决策的滚动轴承声振信号故障诊断方法。利用多个传感器采集轴承在不同故障模式下的声振信号,将每个信号通过VMD分解得到K个IMF分量;对各个IM... 针对滚动轴承早期故障特征微弱且难以有效辨识的问题,提出一种基于tSNE-ASC特征选择和DSmT融合决策的滚动轴承声振信号故障诊断方法。利用多个传感器采集轴承在不同故障模式下的声振信号,将每个信号通过VMD分解得到K个IMF分量;对各个IMF分量进行特征提取,构建各个特征的数据集矩阵;利用tSNE将各特征数据集矩阵降维至二维,计算平均轮廓系数(ASC);根据ASC大于临界值提取出声振故障信号的敏感特征;基于诊断模型实现轴承故障的初级诊断;利用DSmT将声振信号初级诊断结果进行融合决策,得出最终的诊断结论。实验结果表明:基于tSNE-ASC的特征选择方法能有效提取混合域特征中的敏感特征,在不同工况、不同诊断模型中均具有很高的诊断精度;DSmT决策融合有效降低了单一信号诊断的不确定性,在变载荷和升降速非平稳工况下均有很高的诊断精度。 展开更多
关键词 声振信号 轴承故障诊断 变分模态分解 t分布随机邻近嵌入 平均轮廓系数 DSmT融合决策
在线阅读 下载PDF
基于IITD模糊熵与随机森林的滚动轴承故障诊断方法 被引量:25
8
作者 陈剑 蔡坤奇 +4 位作者 陶善勇 杨斌 刘圆圆 刘幸福 黄凯旋 《计量学报》 CSCD 北大核心 2021年第6期774-779,共6页
针对滚动轴承故障微弱振动信号特征提取后难以识别的问题,提出基于改进的固有时间尺度分解(IITD)和模糊熵(FE)输入随机森林(RF)模式识别的滚动轴承故障诊断方法。首先,利用轴承试验台采集正常、滚动体故障、内圈故障、外圈故障等4种状... 针对滚动轴承故障微弱振动信号特征提取后难以识别的问题,提出基于改进的固有时间尺度分解(IITD)和模糊熵(FE)输入随机森林(RF)模式识别的滚动轴承故障诊断方法。首先,利用轴承试验台采集正常、滚动体故障、内圈故障、外圈故障等4种状态下轴承的振动信号;通过IITD分解将采集到的振动信号分解成一组固有旋转分量(PRC),然后选取表征故障主要信息的有效分量计算其模糊熵值并构建特征向量,输入到随机森林分类器模型进行识别分类。实验数据分析结果表明,该方法可以有效地实现滚动轴承故障类别的诊断。 展开更多
关键词 计量学 滚动轴承 固有时间尺度 模糊熵 随机森林 故障诊断
在线阅读 下载PDF
基于奇异值分解和独立分量分析的滚动轴承故障诊断方法 被引量:19
9
作者 陈剑 刘圆圆 +3 位作者 黄凯旋 杨斌 刘幸福 蔡坤奇 《计量学报》 CSCD 北大核心 2022年第6期777-785,共9页
针对强背景噪声下难以提取滚动轴承早期故障信号中故障特征频率的问题,提出奇异值分解和独立分量分析相结合的滚动轴承故障诊断方法。该方法首先利用相空间重构将一维时域矩阵拓展到高维矩阵,得到吸引子轨迹矩阵;然后对轨迹矩阵进行奇... 针对强背景噪声下难以提取滚动轴承早期故障信号中故障特征频率的问题,提出奇异值分解和独立分量分析相结合的滚动轴承故障诊断方法。该方法首先利用相空间重构将一维时域矩阵拓展到高维矩阵,得到吸引子轨迹矩阵;然后对轨迹矩阵进行奇异值分解降噪,依据奇异值差分谱阈值原则选取相应阶次分量进行重组构造虚拟噪声通道;接着将重组信号和观测信号进行独立分量分析分离;最后利用能量算子解调方法提取出有效的故障特征分量,进而识别故障类型。滚动轴承故障诊断实验和仿真结果表明该方法有效可行。 展开更多
关键词 计量学 滚动轴承 故障诊断 奇异值分解 独立分量分析 降噪
在线阅读 下载PDF
基于VMD和卷积神经网络的变工况 轴承故障诊断方法 被引量:12
10
作者 陈剑 黄凯旋 +4 位作者 吕伍佯 刘圆圆 杨斌 刘幸福 蔡坤奇 《计量学报》 CSCD 北大核心 2021年第7期892-897,共6页
针对变工况条件下轴承故障数据无法大量获取以及诊断困难的问题,提出了基于变分模态分解和卷积神经网络的轴承故障诊断方法,使用稳态工况获取的数据训练,能对变工况下的数据实现有效诊断。首先对轴承振动信号进行变分模态分解,以获得有... 针对变工况条件下轴承故障数据无法大量获取以及诊断困难的问题,提出了基于变分模态分解和卷积神经网络的轴承故障诊断方法,使用稳态工况获取的数据训练,能对变工况下的数据实现有效诊断。首先对轴承振动信号进行变分模态分解,以获得有限带宽的固有模态函数;然后构建卷积神经网络模型,采用优化技术提高模型适应性,实现对固有模态函数的自适应特征提取和分类;最后使用台架试验获得的滚动轴承故障数据进行验证,并与深度残差网络和支持向量机进行对比。结果表明,该模型对变工况数据的诊断/识别率达到100%/98.86%,高于对比模型的测试结果,有效实现了变工况轴承故障诊断。 展开更多
关键词 计量学 滚动轴承 复合型故障诊断 变工况 卷积神经网络 状态识别
在线阅读 下载PDF
基于VMD相对能量熵和自适应ARMA模型的轴承性能退化趋势动态预警 被引量:13
11
作者 陈剑 夏康 +1 位作者 黄凯旋 刘幸福 《电子测量与仪器学报》 CSCD 北大核心 2020年第8期116-123,共8页
为了有效监测滚动轴承性能退化趋势及其指标异常波动,提出了一种基于变分模态分解(VMD)的相对能量熵和自回归滑动平均(ARMA)模型的滚动轴承性能退化趋势动态预警方法。方法利用VMD对滚动轴承寿命数据进行分解,得到有限带宽固有模态函数(... 为了有效监测滚动轴承性能退化趋势及其指标异常波动,提出了一种基于变分模态分解(VMD)的相对能量熵和自回归滑动平均(ARMA)模型的滚动轴承性能退化趋势动态预警方法。方法利用VMD对滚动轴承寿命数据进行分解,得到有限带宽固有模态函数(BLIMFs);对该BLIMFs分量的能量进行相对熵分析,提取滚动轴承性能退化特征,得到VMD相对能量熵的轴承性能退化评估指标;该相对能量熵值作为输入供ARMA模型进行动态回归预测。试验结果表明,该方法能有效监测滚动轴承性能退化趋势、指标的异常波动,验证了所提方法的有效性。 展开更多
关键词 变分模态分解 相对能量熵 ARMA模型 滚动轴承 性能退化
在线阅读 下载PDF
基于直方图均衡化和卷积神经网络的轴承故障诊断方法 被引量:12
12
作者 陈剑 孙太华 +4 位作者 黄凯旋 阚东 曹昆明 张磊 程明 《计量学报》 CSCD 北大核心 2022年第7期907-912,共6页
针对传统的滚动轴承故障诊断方法依赖人工特征提取和专家经验,难以自适应提取强噪声信号微弱故障特征的问题,提出一种直方图均衡化和卷积神经网络(CNN)相结合的智能诊断方法。首先,将传感器采集到的一维振动信号通过横向插值法转换为便... 针对传统的滚动轴承故障诊断方法依赖人工特征提取和专家经验,难以自适应提取强噪声信号微弱故障特征的问题,提出一种直方图均衡化和卷积神经网络(CNN)相结合的智能诊断方法。首先,将传感器采集到的一维振动信号通过横向插值法转换为便于模型识别的二维振动图像,利用直方图均衡化技术拉伸像素之间灰度值差别的动态范围,突出纹理细节和对比度,以增强周期性故障特征;然后构建深层CNN模型,采用优化技术降低模型参数量,逐层学习监测数据与故障状态之间的复杂映射关系。实验结果表明该方法具有高达99%以上的准确率,对不同负载下的故障信号仍具有较高的识别精度和泛化能力。 展开更多
关键词 计量学 滚动轴承 直方图均衡化 卷积神经网络 故障诊断
在线阅读 下载PDF
基于IVMD和马田系统的滚动轴承故障检测方法 被引量:13
13
作者 陈剑 庄学凯 +2 位作者 吕伍佯 陶善勇 王维 《计量学报》 CSCD 北大核心 2019年第6期1083-1087,共5页
针对滚动轴承运转信号单一特征参数对早期故障的敏感性、可靠性问题,提出一种基于IVMD和马田系统的滚动轴承故障诊断方法。该方法首先根据谱相关系数确定VMD分解层数;其次,通过VMD方法对机械振动信号进行处理得到一系列有限带宽固有模... 针对滚动轴承运转信号单一特征参数对早期故障的敏感性、可靠性问题,提出一种基于IVMD和马田系统的滚动轴承故障诊断方法。该方法首先根据谱相关系数确定VMD分解层数;其次,通过VMD方法对机械振动信号进行处理得到一系列有限带宽固有模态函数,并计算各模态函数的特征参数,在此基础上构建MTS系统的基准空间。引用信噪比的方法筛选有效特征变量,并重新构建MTS的基准空间。最后,计算待诊断信号到基准空间的马氏距离来检测轴承故障,建立滚动轴承早期故障的诊断控制指标。 展开更多
关键词 计量学 IVMD 滚动轴承 马田系统 故障诊断
在线阅读 下载PDF
基于广义回归神经网络-柔性最大值分类模型的轴承故障诊断方法 被引量:9
14
作者 陈剑 吕伍佯 +1 位作者 庄学凯 陶善勇 《振动与冲击》 EI CSCD 北大核心 2020年第21期1-8,16,共9页
针对复杂工况下的滚动轴承振动信号,提出一种基于广义回归神经网络-柔性最大值分类模型的故障诊断分类方法,实现故障模式的识别。对滚动轴承振动信号进行变分模态分解,特征提取等预处理得到特征数据集,并将其划分为训练集,验证集和测试... 针对复杂工况下的滚动轴承振动信号,提出一种基于广义回归神经网络-柔性最大值分类模型的故障诊断分类方法,实现故障模式的识别。对滚动轴承振动信号进行变分模态分解,特征提取等预处理得到特征数据集,并将其划分为训练集,验证集和测试集;使用训练集和验证集训练广义回归神经网络-柔性最大值分类模型,同时引入灰狼优化算法优选该模型的关键参数平滑因子得到理想的分类模型;将训练好的模型应用测试集,输出故障识别结果;通过模拟试验采集不同工况下的轴承故障数据,进行方法有效性验证。结果表明该方法能在小样本训练集下实现对不同工况下的轴承故障的有效诊断,是一种适用于实际工况的故障诊断方法。 展开更多
关键词 故障诊断 滚动轴承 广义回归神经网络(GRNN) 柔性最大值归一化 灰狼优化(GWO)
在线阅读 下载PDF
基于位错叠加法和改进概率神经网络的离心泵故障诊断方法 被引量:6
15
作者 陈剑 许畅 徐庭亮 《中国机械工程》 EI CAS CSCD 北大核心 2023年第23期2854-2861,共8页
提出了一种基于位错叠加法和改进概率神经网络的离心泵故障诊断方法以解决现场强背景噪声下基于离心泵声辐射信号的在线故障诊断问题。首先利用位错叠加法对采集的离心泵声辐射信号进行降噪处理,增强声辐射信号中的故障信息,提高信噪比... 提出了一种基于位错叠加法和改进概率神经网络的离心泵故障诊断方法以解决现场强背景噪声下基于离心泵声辐射信号的在线故障诊断问题。首先利用位错叠加法对采集的离心泵声辐射信号进行降噪处理,增强声辐射信号中的故障信息,提高信噪比;然后提取声信号时域特征以构造时域特征矩阵,通过主成分分析法对获得的时域特征矩阵进行降维处理,将降维后的信号作为机器学习概率神经网络的输入;同时用哈里斯鹰优化算法来优化概率神经网络参数得到诊断模型,继而用改进的概率神经网络对离心泵故障进行模式识别,并与多种诊断方法进行比较。实验结果表明:位错叠加法能够突出信号特征、实现信号增强,改进的概率神经网络具有良好的离心泵声辐射信号在线故障诊断能力。 展开更多
关键词 离心泵 故障诊断 位错叠加法 概率神经网络 哈里斯鹰优化算法
在线阅读 下载PDF
基于IVMD的单通道盲源分离方法及其应用 被引量:7
16
作者 汤杰 陈剑 杨斌 《组合机床与自动化加工技术》 北大核心 2018年第7期25-30,共6页
针对机械振动信号单通道盲源分离问题,提出了一种融合改进变分模态分解与时频分析的单通道信号盲源分离方法,并将其应用于滚动轴承复合故障的诊断中。该方法首先针对变分模态分解(Variational Mode Decomposition)过程中的层数选取问题... 针对机械振动信号单通道盲源分离问题,提出了一种融合改进变分模态分解与时频分析的单通道信号盲源分离方法,并将其应用于滚动轴承复合故障的诊断中。该方法首先针对变分模态分解(Variational Mode Decomposition)过程中的层数选取问题,提出了一种根据谱相关系数确定分解层数的改进变分模态分解方法(Improved Variational Mode Decomposition,IVMD)。其次,采用改进变分模态分解对观测的单通道机械振动信号进行处理,得到一系列有限带宽固有模态函数(Band-limited Intrinsic Mode Functions,BLIMFs);然后,将原信号与得到的固有模态分量及其残余项组成虚拟多维观测信号,以突破传统盲源分离方法要求传感器数目必须大于或等于分离出的分量数目限制,并利用奇异值分解估计振源的数目。最后,根据振源数目选择与原信号谱相关系数较大的BLIMFs分量,并将分解残余项作为单独分量,重组虚拟多通道观测信号。采用基于时频分析的盲源分离算法实现非平稳信号的盲源分离;仿真和实验结果表明,该方法能够有效提高非平稳振动信号的分离精度,实现滚动轴承复合故障的诊断。 展开更多
关键词 变分模态分解 时频分析 单通道盲源分离 滚动轴承复合故障诊断
在线阅读 下载PDF
基于BAS优化堆栈稀疏自编码器的轴承故障诊断 被引量:3
17
作者 张磊 陈剑 +3 位作者 孙太华 曹昆明 阚东 程明 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2022年第12期1608-1614,1662,共8页
针对复杂工况下轴承载荷的时变非平稳性,文章提出一种基于天牛须搜索(beetle antennae search,BAS)算法优化堆栈稀疏自编码器的轴承故障诊断方法,以解决复杂工况下难以快速准确判断轴承故障类型的问题。首先,通过对轴承振动信号进行时... 针对复杂工况下轴承载荷的时变非平稳性,文章提出一种基于天牛须搜索(beetle antennae search,BAS)算法优化堆栈稀疏自编码器的轴承故障诊断方法,以解决复杂工况下难以快速准确判断轴承故障类型的问题。首先,通过对轴承振动信号进行时域、频域特征提取和变分模态分解,得到其固有模态函数,提取其时域、频域和固有模态函数的44个特征构建数据集,作为机器学习诊断网络的输入;其次,通过稀疏自编码器二次特征提取获得更加典型的特征,同时引入BAS算法对堆栈稀疏自编码器的稀疏惩罚因子进行自适应选取以获得最优分类模型;最后,通过Softmax分类层实现对滚动轴承的故障诊断分类。试验结果表明,该方法不仅在平稳载荷下具有很好的轴承故障分类能力,而且在时变非平稳性载荷以及不同测试数据量下仍然具有较好的故障分类效果。 展开更多
关键词 轴承故障诊断 深度神经网络 堆栈稀疏自编码器 变分模态分解 天牛须搜索(BAS)算法
在线阅读 下载PDF
基于POVMD和频谱自相关分析的滚动轴承微弱故障特征提取 被引量:5
18
作者 陈剑 汤杰 《电子测量与仪器学报》 CSCD 北大核心 2018年第4期13-20,共8页
针对滚动轴承早期微弱故障特征提取困难的问题,提出基于参数优化变分模态分解(POVMD)与频谱自相关分析相结合的微弱故障特征提取方法。该方法首先针对变分模态分解(VMD)过程中参数选取的问题,提出了基于频谱自相关特征因子(SACFF)最大化... 针对滚动轴承早期微弱故障特征提取困难的问题,提出基于参数优化变分模态分解(POVMD)与频谱自相关分析相结合的微弱故障特征提取方法。该方法首先针对变分模态分解(VMD)过程中参数选取的问题,提出了基于频谱自相关特征因子(SACFF)最大化的VMD参数搜索策略。其次,采用遗传算法对VMD的参数进行优化搜索,从而得到最优参数组合,并依此参数对原始信号进行VMD处理,获得一系列有限带宽固有模态函数(BLIMFs)。最后,根据SACFF指标最大化原则选取最优BLIMF分量进行频谱自相关分析,以克服频谱自相关方法在滚动轴承微弱故障特征提取上的局限性。仿真和实验结果表明,该方法能够有效提取滚动轴承微弱故障特征,较EMD-频谱自相关方法和单一频谱自相关方法效果更好。 展开更多
关键词 变分模态分解 频谱自相关分析 遗传算法 轴承故障 特征提取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部