期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
轻量级注意力级联网络的偏振计算成像超分辨率重建 被引量:7
1
作者 王杰 徐国明 +2 位作者 马健 王勇 李毅 《光学精密工程》 EI CAS CSCD 北大核心 2022年第19期2404-2419,共16页
深度学习模式下新型偏振计算成像方法存在随着网络深度的增加计算复杂度和内存使用相应增加以及分层特征提取不充分的问题,针对该问题,提出一种轻量级注意力级联网络的偏振计算成像超分辨率方法,采用级联连接和融合连接的方式来深化卷... 深度学习模式下新型偏振计算成像方法存在随着网络深度的增加计算复杂度和内存使用相应增加以及分层特征提取不充分的问题,针对该问题,提出一种轻量级注意力级联网络的偏振计算成像超分辨率方法,采用级联连接和融合连接的方式来深化卷积层的表征能力,以有效地传递浅层特征并减少参数量。设计空间注意力自适应权重机制以提取关键的空间内容特征,构造空间金字塔网络增强多感受野下的偏振特征信息,特别地,上采样模块引入浅层与深层重建双路径,通过融合双层路径特征计算生成高分辨率偏振图像。最后,网络末端信息细化块用以学习更精细的特征并增强重建质量。实验结果表明:本文网络重建图像的纹理细节更加丰富,在全偏振图像集上2倍超分辨率的峰值信噪比为45.12 dB,参数量仅约为MSRN模型的9%。所提方法通过级联方式有效捕捉低频特征信息同时极大地减少参数量,并结合注意力金字塔结构探索深层特征,实现了轻量级网络的高效超分辨率重建效果。 展开更多
关键词 计算成像 超分辨率 轻量级网络 偏振图像 级联连接
在线阅读 下载PDF
基于双重注意力残差网络的偏振图像超分辨率重建 被引量:4
2
作者 徐国明 王杰 +3 位作者 马健 王勇 刘佳庆 李毅 《光子学报》 EI CAS CSCD 北大核心 2022年第4期295-309,共15页
在利用深度学习进行偏振图像计算成像过程中,图像映射函数的解空间极大、空间分辨率一般较低,难以生成清晰的纹理细节且存在高频信息缺失等问题。为解决该问题,提出一种结合双注意力机制的深度残差偏振图像超分辨率网络。该网络由一个... 在利用深度学习进行偏振图像计算成像过程中,图像映射函数的解空间极大、空间分辨率一般较低,难以生成清晰的纹理细节且存在高频信息缺失等问题。为解决该问题,提出一种结合双注意力机制的深度残差偏振图像超分辨率网络。该网络由一个具有全局跳跃连接的残差网络组成,包含10个残差组,每个残差组包含20个具有局部跳跃连接的双重注意力块级联的残差块;同时考虑通道间的相互依赖性,设计自适应通道特征调整机制;引入级联的空间注意力块,将残差的特征更集中于关键的空间内容。将所提方法与Bicubic、SRCNN、FSRCNN、EDSR等方法进行对照实验与成像系统对比校正实验,结果表明该方法重建图像纹理细节更加丰富,亮度均匀,较为接近成像系统的高清图像,同时峰值信噪比和结构相似性指标优于其他方法但参数量仅约为EDSR的2/5。 展开更多
关键词 计算成像 超分辨率 深度残差网络 偏振图像 双重注意力块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部