针对深度残差网络无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(direct fast iterative filtering,DFIF)和自适应深度残差网络(adaptive deep residual network,AResNet)的方法,并将其应用于噪声环境下旋转机械的故...针对深度残差网络无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(direct fast iterative filtering,DFIF)和自适应深度残差网络(adaptive deep residual network,AResNet)的方法,并将其应用于噪声环境下旋转机械的故障诊断中。首先,在采集的振动信号中增加不同强度的噪声,再经DFIF分解得到若干个本征模态函数(intrinsic mode function,IMF)分量,选取综合评价指标值最小的IMF分量作为输入样本;其次,提出了自适应残差单元(adaptive residual building unit,ARBU),ARBU通过计算各个通道的最优系数,自适应地放大故障敏感特征和抑制无关特征,能够更好地替代传统的残差单元;最后,基于ARBU构造AResNet,输入样本经过AResNet得到故障诊断结果。将所提方法应用于噪声背景下旋转机械的故障诊断中,在两个不同数据集中进行了验证。研究结果表明,与现有方法相比,所提方法具有更高的噪声鲁棒性、稳定性和更优的计算效率,且能够更好地解决旋转机械在噪声背景下故障特征难以有效挖掘的问题。展开更多
针对FasterVit网络存在的注意力机制失衡、池化策略缺陷导致部分重要特征无法保留和损失函数不能全面考虑所有类别的信息导致学习到的特征比较分散等问题,提出了一种基于CFasterVit-三并联分支融合注意力机制(triple-parallel fusion at...针对FasterVit网络存在的注意力机制失衡、池化策略缺陷导致部分重要特征无法保留和损失函数不能全面考虑所有类别的信息导致学习到的特征比较分散等问题,提出了一种基于CFasterVit-三并联分支融合注意力机制(triple-parallel fusion attention model,TFAM)与余弦均匀流形逼近与投影(cosineuniform manifold approximation and projection,COS-UMAP)模型的滚动轴承故障诊断方法。该模型由FasterVit-TFAM网络、COS-UMAP降维算法和激活函数类距均值标准差损失函数(class-distance mean standard deviation loss,CMSD)-Softmax组成。首先,提出了一种新的注意力机制TFAM,并与FasterVit网络结合,提升了FasterVit网络信息关注的均衡性和表征能力;其次,将基于COS-UMAP降维算法取代FasterVit网络全连接层前最后一次池化操作,有效筛选并保留多维数据中的重要特征;最后,将类距均值标准差损失函数替换Softmax激活函数中的交叉熵损失函数,更全面地学习特征并提高模型的泛化性。西安交通大学滚动轴承数据集滚动轴承故障试验结果表明,TFAM注意力机制和其他注意力机制相比诊断准确率最大提升8.0%,COS-UMAP对比其他降维算法诊断准确率最大提升15.8%,CMSD对比交叉熵损失函数诊断准确率提升0.5%,所提模型对故障样本的识别准确率达到了99.6%,相比FasterVit提升了1.4%,相较于其他网络模型最大提升7.8%;东南大学滚动轴承数据集仿真验证试验结果表明,所提模型对故障样本识别率达98.6%,相比FasterVit提升了2.2%,平均每轮训练时间缩短了16.92 s,对比其他网络模型最大提升12.2%,有效提高了滚动轴承故障诊断模型的准确率和泛化性能。展开更多
文摘针对深度残差网络无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(direct fast iterative filtering,DFIF)和自适应深度残差网络(adaptive deep residual network,AResNet)的方法,并将其应用于噪声环境下旋转机械的故障诊断中。首先,在采集的振动信号中增加不同强度的噪声,再经DFIF分解得到若干个本征模态函数(intrinsic mode function,IMF)分量,选取综合评价指标值最小的IMF分量作为输入样本;其次,提出了自适应残差单元(adaptive residual building unit,ARBU),ARBU通过计算各个通道的最优系数,自适应地放大故障敏感特征和抑制无关特征,能够更好地替代传统的残差单元;最后,基于ARBU构造AResNet,输入样本经过AResNet得到故障诊断结果。将所提方法应用于噪声背景下旋转机械的故障诊断中,在两个不同数据集中进行了验证。研究结果表明,与现有方法相比,所提方法具有更高的噪声鲁棒性、稳定性和更优的计算效率,且能够更好地解决旋转机械在噪声背景下故障特征难以有效挖掘的问题。
文摘针对FasterVit网络存在的注意力机制失衡、池化策略缺陷导致部分重要特征无法保留和损失函数不能全面考虑所有类别的信息导致学习到的特征比较分散等问题,提出了一种基于CFasterVit-三并联分支融合注意力机制(triple-parallel fusion attention model,TFAM)与余弦均匀流形逼近与投影(cosineuniform manifold approximation and projection,COS-UMAP)模型的滚动轴承故障诊断方法。该模型由FasterVit-TFAM网络、COS-UMAP降维算法和激活函数类距均值标准差损失函数(class-distance mean standard deviation loss,CMSD)-Softmax组成。首先,提出了一种新的注意力机制TFAM,并与FasterVit网络结合,提升了FasterVit网络信息关注的均衡性和表征能力;其次,将基于COS-UMAP降维算法取代FasterVit网络全连接层前最后一次池化操作,有效筛选并保留多维数据中的重要特征;最后,将类距均值标准差损失函数替换Softmax激活函数中的交叉熵损失函数,更全面地学习特征并提高模型的泛化性。西安交通大学滚动轴承数据集滚动轴承故障试验结果表明,TFAM注意力机制和其他注意力机制相比诊断准确率最大提升8.0%,COS-UMAP对比其他降维算法诊断准确率最大提升15.8%,CMSD对比交叉熵损失函数诊断准确率提升0.5%,所提模型对故障样本的识别准确率达到了99.6%,相比FasterVit提升了1.4%,相较于其他网络模型最大提升7.8%;东南大学滚动轴承数据集仿真验证试验结果表明,所提模型对故障样本识别率达98.6%,相比FasterVit提升了2.2%,平均每轮训练时间缩短了16.92 s,对比其他网络模型最大提升12.2%,有效提高了滚动轴承故障诊断模型的准确率和泛化性能。