冬小麦叶面积指数(leaf area index,LAI)是进行作物长势判断和产量估测的重要农学指标之一,高光谱遥感技术为大面积、快速监测植被LAI提供了有效途径。在探讨利用最小二乘支持向量机(least squares support vector machines,LS-SVM)方...冬小麦叶面积指数(leaf area index,LAI)是进行作物长势判断和产量估测的重要农学指标之一,高光谱遥感技术为大面积、快速监测植被LAI提供了有效途径。在探讨利用最小二乘支持向量机(least squares support vector machines,LS-SVM)方法和高光谱数据对不同条件下冬小麦LAI的估算能力。在用主成分分析法(principal component analysis,PCA)对PHI航空数据降维的基础上,利用实测LAI数据和高光谱反射率数据,构建LS-SVM模型,采用独立变量法,分别估算不同株型品种、不同生育时期、不同氮素和水分处理条件下的冬小麦LAI,并与传统NDVI模型反演结果对比。结果显示,每种条件下的LS-SVM模型都具有比NDVI模型更高的决定系数和更低的均方根误差值,即反演精度高于相应的NDVI模型。NDVI模型对不同株型品种、不同氮素和水分条件下冬小麦LAI估算精度不稳定,LS-SVM则表现出较好的稳定性。表明LS-SVM方法利用高光谱反射率数据对于不同条件下的冬小麦LAI反演具有良好的学习能力和普适性。展开更多
针对单纯利用压力点分布特征进行触觉步态识别的不足,提出了一种结合无符号Laplace谱特征的动态触觉步态识别算法。利用足底压力数字化场地采集常速、快速和慢速三种情况下的触觉步态数据,生成足底压力分布图像,并根据足底解剖学的结构...针对单纯利用压力点分布特征进行触觉步态识别的不足,提出了一种结合无符号Laplace谱特征的动态触觉步态识别算法。利用足底压力数字化场地采集常速、快速和慢速三种情况下的触觉步态数据,生成足底压力分布图像,并根据足底解剖学的结构划分区域;以足底压力图像各区域为节点构造结构图,并采用无符号Laplace矩阵表示;通过对该矩阵进行奇异值分解(Singular Value Decomposition,SVD)获取谱特征,并结合形状特征得到触觉步态特征;选择"一对一"的支持向量机(Support Vector Machine,SVM)多分类方法,按照人在行走过程中不同的速度分别构造分类器,从而实现动态触觉步态的识别。实验结果表明该识别算法对不同速度样本数据的触觉步态识别正确率都较高。展开更多
文摘冬小麦叶面积指数(leaf area index,LAI)是进行作物长势判断和产量估测的重要农学指标之一,高光谱遥感技术为大面积、快速监测植被LAI提供了有效途径。在探讨利用最小二乘支持向量机(least squares support vector machines,LS-SVM)方法和高光谱数据对不同条件下冬小麦LAI的估算能力。在用主成分分析法(principal component analysis,PCA)对PHI航空数据降维的基础上,利用实测LAI数据和高光谱反射率数据,构建LS-SVM模型,采用独立变量法,分别估算不同株型品种、不同生育时期、不同氮素和水分处理条件下的冬小麦LAI,并与传统NDVI模型反演结果对比。结果显示,每种条件下的LS-SVM模型都具有比NDVI模型更高的决定系数和更低的均方根误差值,即反演精度高于相应的NDVI模型。NDVI模型对不同株型品种、不同氮素和水分条件下冬小麦LAI估算精度不稳定,LS-SVM则表现出较好的稳定性。表明LS-SVM方法利用高光谱反射率数据对于不同条件下的冬小麦LAI反演具有良好的学习能力和普适性。
文摘针对单纯利用压力点分布特征进行触觉步态识别的不足,提出了一种结合无符号Laplace谱特征的动态触觉步态识别算法。利用足底压力数字化场地采集常速、快速和慢速三种情况下的触觉步态数据,生成足底压力分布图像,并根据足底解剖学的结构划分区域;以足底压力图像各区域为节点构造结构图,并采用无符号Laplace矩阵表示;通过对该矩阵进行奇异值分解(Singular Value Decomposition,SVD)获取谱特征,并结合形状特征得到触觉步态特征;选择"一对一"的支持向量机(Support Vector Machine,SVM)多分类方法,按照人在行走过程中不同的速度分别构造分类器,从而实现动态触觉步态的识别。实验结果表明该识别算法对不同速度样本数据的触觉步态识别正确率都较高。