社区发现旨在挖掘复杂网络的社区结构,现有的社区发现方法普遍存在着划分速度和精度不均衡的问题.商空间理论是一种粒度计算理论,通过粒度变换来降低问题求解复杂度,同时保持问题求解精度.提出一种基于商空间的多层粒化社区发现方法(mul...社区发现旨在挖掘复杂网络的社区结构,现有的社区发现方法普遍存在着划分速度和精度不均衡的问题.商空间理论是一种粒度计算理论,通过粒度变换来降低问题求解复杂度,同时保持问题求解精度.提出一种基于商空间的多层粒化社区发现方法(multilayer granulation community detection method based on quotient space,MGQS).该方法首先通过快速粒化操作对复杂网络进行多层次粒化,形成逐层粒化、逐层抽象的多粒度商空间,再依据所求问题选择最佳粒层作为最终划分结果.在公用数据集上的系列实验结果表明,相比于其他算法,该方法既能快速划分不同类型和规模的网络,也能获取多粒度的社区结构并根据所求问题选择最佳粒层,取得较高的模块度值和NMI值.展开更多
为了抑制病毒在网络中快速爆发,快速有效的免疫策略将有助于减少病毒带来的巨大损失,随机免疫、目标免疫、熟人免疫以及多种改进的免疫策略已经被提出.目前基于节点重要性的免疫策略主要关注该节点的度大小,而忽略了与其相邻的不同节点...为了抑制病毒在网络中快速爆发,快速有效的免疫策略将有助于减少病毒带来的巨大损失,随机免疫、目标免疫、熟人免疫以及多种改进的免疫策略已经被提出.目前基于节点重要性的免疫策略主要关注该节点的度大小,而忽略了与其相邻的不同节点的重要性并不相同.基于节点的重要性提出一种改进的免疫策略——基于节点度与聚类系数的病毒免疫算法(Virus immunization based on degree and clustering coefficient of node,IDCC).通过考虑节点的度信息和与其邻居节点间的连接紧密程度计算节点重要性,选择用聚类系数表示连接紧密程度,并计算节点的度大小与聚类系数之和,选择和值较大的节点进行免疫.在人工合成网络和真实的大学邮件网络实现免疫模型并记录感染的节点数目.实验结果表明,使用IDCC免疫策略后,更能抑制病毒传播,且在免疫比例低于20%时,IDCC免疫策略效率最高.展开更多
文摘社区发现旨在挖掘复杂网络的社区结构,现有的社区发现方法普遍存在着划分速度和精度不均衡的问题.商空间理论是一种粒度计算理论,通过粒度变换来降低问题求解复杂度,同时保持问题求解精度.提出一种基于商空间的多层粒化社区发现方法(multilayer granulation community detection method based on quotient space,MGQS).该方法首先通过快速粒化操作对复杂网络进行多层次粒化,形成逐层粒化、逐层抽象的多粒度商空间,再依据所求问题选择最佳粒层作为最终划分结果.在公用数据集上的系列实验结果表明,相比于其他算法,该方法既能快速划分不同类型和规模的网络,也能获取多粒度的社区结构并根据所求问题选择最佳粒层,取得较高的模块度值和NMI值.
文摘为了抑制病毒在网络中快速爆发,快速有效的免疫策略将有助于减少病毒带来的巨大损失,随机免疫、目标免疫、熟人免疫以及多种改进的免疫策略已经被提出.目前基于节点重要性的免疫策略主要关注该节点的度大小,而忽略了与其相邻的不同节点的重要性并不相同.基于节点的重要性提出一种改进的免疫策略——基于节点度与聚类系数的病毒免疫算法(Virus immunization based on degree and clustering coefficient of node,IDCC).通过考虑节点的度信息和与其邻居节点间的连接紧密程度计算节点重要性,选择用聚类系数表示连接紧密程度,并计算节点的度大小与聚类系数之和,选择和值较大的节点进行免疫.在人工合成网络和真实的大学邮件网络实现免疫模型并记录感染的节点数目.实验结果表明,使用IDCC免疫策略后,更能抑制病毒传播,且在免疫比例低于20%时,IDCC免疫策略效率最高.