提出了一种基于改进测地线主动轮廓(geodesic active contour,GAC)的自动分割算法.首先通过结合径向浅浮槽和区域填充算法得到滤波后图像的大致轮廓,然后通过构造基于区域信息的符号压力函数代替边界停止函数,并且加入了基于边界梯度信...提出了一种基于改进测地线主动轮廓(geodesic active contour,GAC)的自动分割算法.首先通过结合径向浅浮槽和区域填充算法得到滤波后图像的大致轮廓,然后通过构造基于区域信息的符号压力函数代替边界停止函数,并且加入了基于边界梯度信息的能量项,有效地克服了弱边界的问题.该模型用二值水平集方法实现,使算法的稳定性更高,计算量大大降低.对前列腺直肠超声图像的实验结果表明:本算法迭代收敛速度快,有效避免了边界泄露问题.展开更多
针对脑出血和脑肿瘤的自动检出应用,提出了一种创建高分辨率颅脑CT图像纹理统计图谱的方法。采用图像局部直方图的多阶矩特征结合多分辨率策略提取颅脑CT图像的纹理特征,并在特征中融合边缘与区域信息。在创建统计图谱时,对经过预处理...针对脑出血和脑肿瘤的自动检出应用,提出了一种创建高分辨率颅脑CT图像纹理统计图谱的方法。采用图像局部直方图的多阶矩特征结合多分辨率策略提取颅脑CT图像的纹理特征,并在特征中融合边缘与区域信息。在创建统计图谱时,对经过预处理的样本图像使用D em ons方法进行非刚性配准,并提取多分辨率纹理特征及其统计参量。检测病变时将待测样本的纹理特征向量与图谱比较,并以M aha lanob is距离作为病变发生概率的度量进行阈值分割。实验表明,本文方法对均匀密度和混杂密度型颅脑病变均有较好的诊断效果,且计算复杂度较低。展开更多
文摘提出了一种基于改进测地线主动轮廓(geodesic active contour,GAC)的自动分割算法.首先通过结合径向浅浮槽和区域填充算法得到滤波后图像的大致轮廓,然后通过构造基于区域信息的符号压力函数代替边界停止函数,并且加入了基于边界梯度信息的能量项,有效地克服了弱边界的问题.该模型用二值水平集方法实现,使算法的稳定性更高,计算量大大降低.对前列腺直肠超声图像的实验结果表明:本算法迭代收敛速度快,有效避免了边界泄露问题.
文摘针对脑出血和脑肿瘤的自动检出应用,提出了一种创建高分辨率颅脑CT图像纹理统计图谱的方法。采用图像局部直方图的多阶矩特征结合多分辨率策略提取颅脑CT图像的纹理特征,并在特征中融合边缘与区域信息。在创建统计图谱时,对经过预处理的样本图像使用D em ons方法进行非刚性配准,并提取多分辨率纹理特征及其统计参量。检测病变时将待测样本的纹理特征向量与图谱比较,并以M aha lanob is距离作为病变发生概率的度量进行阈值分割。实验表明,本文方法对均匀密度和混杂密度型颅脑病变均有较好的诊断效果,且计算复杂度较低。