高效的图像特征表示是计算机视觉的基础.基于图像的视觉显著性机制及深度学习模型的思想,提出一种融合图像显著性的层次稀疏特征表示用于图像分类.这种层次特征学习每一层都由3个部分组成:稀疏编码、显著性最大值汇聚(saliency max pool...高效的图像特征表示是计算机视觉的基础.基于图像的视觉显著性机制及深度学习模型的思想,提出一种融合图像显著性的层次稀疏特征表示用于图像分类.这种层次特征学习每一层都由3个部分组成:稀疏编码、显著性最大值汇聚(saliency max pooling)和对比度归一化.通过在图像层次稀疏表示中引入图像显著信息,加强了图像特征的语义信息,得到图像显著特征表示.相比于手工指定特征,该模型采用无监督数据驱动的方式直接从图像中学习到有效的图像特征描述.最后采用支持向量机(support vector machine,SVM)分类器进行监督学习,实现对图像进行分类.在2个常用的标准图像数据集(Caltech 101和Caltech 256)上进行的实验结果表明,结合图像显著性信息的层次特征表示,相比于基于局部特征的单层稀疏表示在分类性能上有了显著提升.展开更多
人群异常事件检测是智能视频监控中的重要研究内容,本文提出一种新的融合时空特征的异常行为检测算法。首先提取显著性信息作为空间域特征,采用高精度的光流算法,结合社会力模型计算相互作用力作为时域特征;提出一种新的运动信息特征描...人群异常事件检测是智能视频监控中的重要研究内容,本文提出一种新的融合时空特征的异常行为检测算法。首先提取显著性信息作为空间域特征,采用高精度的光流算法,结合社会力模型计算相互作用力作为时域特征;提出一种新的运动信息特征描述子——相互作用力直方图(HOIF),将其与显著性信息特征相融合送入支持向量机(SVM)进行学习训练,从而对人群事件进行分类。在UMN(University of Minnesota,Twin Cities)数据库上对本文算法有效性进行了验证。实验结果表明,该算法在检测正确率及鲁棒性上要优于其他算法。展开更多
文摘人群异常事件检测是智能视频监控中的重要研究内容,本文提出一种新的融合时空特征的异常行为检测算法。首先提取显著性信息作为空间域特征,采用高精度的光流算法,结合社会力模型计算相互作用力作为时域特征;提出一种新的运动信息特征描述子——相互作用力直方图(HOIF),将其与显著性信息特征相融合送入支持向量机(SVM)进行学习训练,从而对人群事件进行分类。在UMN(University of Minnesota,Twin Cities)数据库上对本文算法有效性进行了验证。实验结果表明,该算法在检测正确率及鲁棒性上要优于其他算法。