期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于GA-BP算法的汽车前端框架翘曲变形优化及验证
1
作者 林煌旭 孔选 +3 位作者 陆将男 周华江 朱国常 朱浩伟 《工程塑料应用》 北大核心 2025年第1期90-97,共8页
针对车用前端框架格栅插槽处翘曲变形大造成整车装配精度差的问题,首先通过Moldflow软件建立有限元模型分析零件初始翘曲变形量及影响参数。选定模具温度、熔体温度、保压压力、保压时间、冷却时间作为设计因素,通过正交试验表得到工艺... 针对车用前端框架格栅插槽处翘曲变形大造成整车装配精度差的问题,首先通过Moldflow软件建立有限元模型分析零件初始翘曲变形量及影响参数。选定模具温度、熔体温度、保压压力、保压时间、冷却时间作为设计因素,通过正交试验表得到工艺参数与翘曲变形量之间的映射关系并建立单目标非线性优化模型。利用GA遗传算法改良的BP神经网络进一步描述优化模型的非线性函数关系,以适应度曲线迭代收敛预测得到最佳的BP网络模型预测工艺参数分别为:模具温度60℃、熔体温度265℃、保压压力55MPa、保压时间4s、冷却时间35s,最大翘曲变形量为1.191mm。最后将最优工艺参数导入Moldflow中模拟得到最大翘曲变形量为1.33mm,较优化前初始翘曲量2.423 mm降低了45.1%。经GA-BP算法优化后的工艺参数应用于生产制造过程,前端框架注塑件偏差测量结果表明,实际测量值与优化后Moldflow模拟值拟合度较高,两者平均偏差为0.28mm,满足整车装配要求,证实了GA-BP神经网络预测模型用于优化前端框架翘曲变形的可行性。 展开更多
关键词 汽车前端框架 翘曲变形 MOLDFLOW 正交试验法 GA遗传算法 BP神经网络模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部