在光储孤岛直流微电网中,需要最大化利用光伏发电,通常对光伏系统采用最大功率点跟踪(maximum power point tracking, MPPT)技术。但传统的MPPT控制速度慢、精度低,特别是在局部阴影情形下极易陷入局部最优解。基于此,首先提出一种将布...在光储孤岛直流微电网中,需要最大化利用光伏发电,通常对光伏系统采用最大功率点跟踪(maximum power point tracking, MPPT)技术。但传统的MPPT控制速度慢、精度低,特别是在局部阴影情形下极易陷入局部最优解。基于此,首先提出一种将布谷鸟搜索算法与电导增量法相结合的混合MPPT控制。利用布谷鸟搜索算法快速全局寻优,再使用电导增量法精确定位,实现快速而准确地跟踪最大功率点。储能单元是光储直流微电网的重要组成部分,其输出电流均分、荷电状态(stateof charge, SoC)均衡和直流母线电压稳定是主要控制目标。但电流均分受线路电阻差异的影响,进而影响SoC均衡和直流母线电压稳定,于是设计一种新的电压电流双环控制策略以实现上述目标。该策略在电压外环采用母线电压作为反馈值,在电流内环中设计了基于一致性算法的控制策略,将SoC与指数函数结合并引入加速因子,使得在充放电过程中实现SoC的快速均衡。所提控制策略既不需要下垂控制,也无需二次补偿控制,减轻了通信负担。最后在Matlab/Simulink中搭建直流微电网系统模型,验证所设计新的混合MPPT控制和电压电流双环控制策略的有效性。展开更多
在分布式电源DG(distributed generation)广泛并网的背景下,配电网柔性互联技术成为解决源端强波动性与不确定性的重要发展趋势。以风电为研究对象,首次提出了含智能软开关SOP(soft open point)的柔性配电网中考虑网侧运行调节的DG双层...在分布式电源DG(distributed generation)广泛并网的背景下,配电网柔性互联技术成为解决源端强波动性与不确定性的重要发展趋势。以风电为研究对象,首次提出了含智能软开关SOP(soft open point)的柔性配电网中考虑网侧运行调节的DG双层协调规划方法。首先,分析了柔性配电网中SOP的组网模型及控制模式;其次,建立了源侧DG规划与网侧SOP运行联合优化、交替迭代的双层模型,上层以DG运营商收益最大为目标确定DG规划方案,下层以网络运行性能最优为目标实现网络的调节优化;提出改进帝国主义竞争算法及锥规划混合算法进行求解;最后,基于改进的33节点柔性网络,证明了所提双层模型及求解方法的有效性。展开更多
准确预测风电功率可以提高电网运行的安全性和可靠性。为进一步提高短期风电功率预测精度,针对目前单一模型难以获得最优预测结果的问题,提出一种CNN-LSTM&GRU多模型组合短期风电功率预测方法。首先,利用卷积神经网络(convolutional...准确预测风电功率可以提高电网运行的安全性和可靠性。为进一步提高短期风电功率预测精度,针对目前单一模型难以获得最优预测结果的问题,提出一种CNN-LSTM&GRU多模型组合短期风电功率预测方法。首先,利用卷积神经网络(convolutional neural network,CNN)提取数据局部特征,并结合长短期记忆(long short term memory,LSTM)网络构造出融合局部特征预提取模块的CNN-LSTM网络结构;然后,将其与门控循环单元(gated recurrent unit,GRU)网络并行,并通过自适应权重学习模块为CNN-LSTM模块和GRU模块的输出选择最佳权重,构建出CNN-LSTM&GRU组合的短期预测模型。最后,对中国西北某风电场的出力进行预测研究,结果表明:所提模型与单一模型或其他组合模型相比,指标误差更小,预测精度更高。展开更多
文摘在光储孤岛直流微电网中,需要最大化利用光伏发电,通常对光伏系统采用最大功率点跟踪(maximum power point tracking, MPPT)技术。但传统的MPPT控制速度慢、精度低,特别是在局部阴影情形下极易陷入局部最优解。基于此,首先提出一种将布谷鸟搜索算法与电导增量法相结合的混合MPPT控制。利用布谷鸟搜索算法快速全局寻优,再使用电导增量法精确定位,实现快速而准确地跟踪最大功率点。储能单元是光储直流微电网的重要组成部分,其输出电流均分、荷电状态(stateof charge, SoC)均衡和直流母线电压稳定是主要控制目标。但电流均分受线路电阻差异的影响,进而影响SoC均衡和直流母线电压稳定,于是设计一种新的电压电流双环控制策略以实现上述目标。该策略在电压外环采用母线电压作为反馈值,在电流内环中设计了基于一致性算法的控制策略,将SoC与指数函数结合并引入加速因子,使得在充放电过程中实现SoC的快速均衡。所提控制策略既不需要下垂控制,也无需二次补偿控制,减轻了通信负担。最后在Matlab/Simulink中搭建直流微电网系统模型,验证所设计新的混合MPPT控制和电压电流双环控制策略的有效性。
文摘在分布式电源DG(distributed generation)广泛并网的背景下,配电网柔性互联技术成为解决源端强波动性与不确定性的重要发展趋势。以风电为研究对象,首次提出了含智能软开关SOP(soft open point)的柔性配电网中考虑网侧运行调节的DG双层协调规划方法。首先,分析了柔性配电网中SOP的组网模型及控制模式;其次,建立了源侧DG规划与网侧SOP运行联合优化、交替迭代的双层模型,上层以DG运营商收益最大为目标确定DG规划方案,下层以网络运行性能最优为目标实现网络的调节优化;提出改进帝国主义竞争算法及锥规划混合算法进行求解;最后,基于改进的33节点柔性网络,证明了所提双层模型及求解方法的有效性。
文摘准确预测风电功率可以提高电网运行的安全性和可靠性。为进一步提高短期风电功率预测精度,针对目前单一模型难以获得最优预测结果的问题,提出一种CNN-LSTM&GRU多模型组合短期风电功率预测方法。首先,利用卷积神经网络(convolutional neural network,CNN)提取数据局部特征,并结合长短期记忆(long short term memory,LSTM)网络构造出融合局部特征预提取模块的CNN-LSTM网络结构;然后,将其与门控循环单元(gated recurrent unit,GRU)网络并行,并通过自适应权重学习模块为CNN-LSTM模块和GRU模块的输出选择最佳权重,构建出CNN-LSTM&GRU组合的短期预测模型。最后,对中国西北某风电场的出力进行预测研究,结果表明:所提模型与单一模型或其他组合模型相比,指标误差更小,预测精度更高。