期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于显著性检测与HOG-NMF特征的快速行人检测方法 被引量:40
1
作者 孙锐 陈军 高隽 《电子与信息学报》 EI CSCD 北大核心 2013年第8期1921-1926,共6页
行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用... 行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用频谱调谐显著性检测提取显著图,并基于熵值门限进行感兴趣区域的提取;组合非负矩阵分解和方向梯度直方图生成HOG-NMF特征;采用加性交叉核支持向量机方法(Intersection Kernel Support Vector Machine,IKSVM)。该算法显著降低了特征维数,在相同的计算复杂度下明显改善了线性支持向量机的检测率。在INRIA数据库的实验结果表明,该方法对比HOG/线性SVM和HOG/RBF-SVM显著减少了检测时间,并达到了满意的检测率。 展开更多
关键词 行人检测 显著性检测(SD) 方向梯度直方图(HOG) 非负矩阵分解(NMF) 交叉核支持向量机(IKSVM)
在线阅读 下载PDF
基于特征融合和交叉核SVM的快速行人检测方法 被引量:17
2
作者 孙锐 侯能干 陈军 《光电工程》 CAS CSCD 北大核心 2014年第2期53-62,共10页
行人检测是目标识别领域的一大难点。现阶段用于行人检测的特征维数都比较高,为克服高维特征对实时性的影响,本文运用主元分析(PCA)对特征进行降维,加快检测速度。单一特征的信息有限,本文运用基于线性鉴别分析(LDA)的线性权重融合原则... 行人检测是目标识别领域的一大难点。现阶段用于行人检测的特征维数都比较高,为克服高维特征对实时性的影响,本文运用主元分析(PCA)对特征进行降维,加快检测速度。单一特征的信息有限,本文运用基于线性鉴别分析(LDA)的线性权重融合原则对一些底层特征(颜色、梯度、直方图)和多层次导向边缘能量特征进行特征融合使特征具有多源信息。且上述特征可采用积分图技术进行快速计算,所以行人检测系统的鲁棒性和实时性得到加强。在目标识别领域直方图交叉核支持向量机(HIKSVM)具有分类快,且准确率高的优点,采用其进行分类,系统实时性更进一步提升。实验表明本文方法检测速度和检测率优于经典的HOG+SVM算法。 展开更多
关键词 行人检测 直方图交叉核支持向量机(HIKSVM) 多层次导向边缘能量特征 特征融合 主元分析(PCA)
在线阅读 下载PDF
基于二次表示的空间目标图像分类 被引量:3
3
作者 蒋飞云 孙锐 +1 位作者 张旭东 李超 《电子与信息学报》 EI CSCD 北大核心 2013年第5期1247-1251,共5页
针对空间目标图像的特点,该文提出一种基于局部不变特征的空间目标图像分类方法。该方法首先提取每幅图像的局部不变特征,利用混合高斯模型(GMM)建立全局的视觉模式,然后依据最大后验概率匹配局部特征和视觉模式来构造整个训练集图像的... 针对空间目标图像的特点,该文提出一种基于局部不变特征的空间目标图像分类方法。该方法首先提取每幅图像的局部不变特征,利用混合高斯模型(GMM)建立全局的视觉模式,然后依据最大后验概率匹配局部特征和视觉模式来构造整个训练集图像的共现矩阵,采用概率潜在语义分析(PLSA)模型得到图像的潜在类别表示来实现图像的二次表示,最后利用SVM算法实现分类。实验结果验证了该方案的有效性。 展开更多
关键词 空间目标分类 局部不变特征 视觉模式 二次表示
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部