期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习自动分割技术的胸部CT影像组学模型预测非小细胞肺癌EGFR基因突变
1
作者
高续
庞奇
+3 位作者
张宏杰
王小雷
郝继元
谢玉海
《放射学实践》
北大核心
2025年第5期573-578,共6页
目的:探讨基于深度学习自动分割技术的胸部CT影像组学模型预测非小细胞肺癌EGFR基因突变的价值。方法:回顾性分析171例经病理证实为非小细胞肺癌且行EGFR基因检测患者的临床及影像资料。按照7:3比例随机拆分为训练组119例(EGFR野生型43...
目的:探讨基于深度学习自动分割技术的胸部CT影像组学模型预测非小细胞肺癌EGFR基因突变的价值。方法:回顾性分析171例经病理证实为非小细胞肺癌且行EGFR基因检测患者的临床及影像资料。按照7:3比例随机拆分为训练组119例(EGFR野生型43例和突变型76例)和验证组52例(EGFR野生型19例和突变型33例)。采用深度学习自动分割技术进行病灶感兴趣区勾画,运用pearson相关性分析和最小绝对收缩和选择算子进行特征筛选,应用支持向量机(SVM)构建预测EGFR基因突变的影像组学模型。临床指标及结节定量参数经单因素及多因素分析构建临床模型,临床指标联合影像组学评分构建列线图。采用受试者工作特征(ROC)曲线评估模型的预测效能,绘制决策曲线分析评价模型的临床应用价值。结果:共筛选出4个最佳影像组学特征构建SVM影像组学模型,其在训练组、验证组中预测EGFR基因突变的AUC分别为0.872、0.833。由最大CT值和吸烟史构建临床模型,其在训练组、验证组中预测EGFR基因突变的AUC分别为0.731、0.770。由吸烟史和影像组学评分构建列线图模型,其在训练组、验证组中预测EGFR基因突变的AUC分别为0.879、0.839。结论:基于深度学习自动分割技术构建的胸部CT影像组学模型对预测NSCLC患者EGFR基因突变具有较高的临床应用价值,临床指标加入未能显著提高其预测效能。
展开更多
关键词
非小细胞肺癌
表皮生长因子受体
体层摄影术
X线计算机
影像组学
深度学习
在线阅读
下载PDF
职称材料
题名
基于深度学习自动分割技术的胸部CT影像组学模型预测非小细胞肺癌EGFR基因突变
1
作者
高续
庞奇
张宏杰
王小雷
郝继元
谢玉海
机构
太和县
人民医院
皖南医学院
附属
太和
医院
放射影像科
太和县人民医院皖南医学院附属太和医院心胸外科
出处
《放射学实践》
北大核心
2025年第5期573-578,共6页
基金
北京医学奖励基金会睿影基金资助项目(YXJL-2022-0105-0116)
皖南医学院科研项目(WK2023JXYY100)。
文摘
目的:探讨基于深度学习自动分割技术的胸部CT影像组学模型预测非小细胞肺癌EGFR基因突变的价值。方法:回顾性分析171例经病理证实为非小细胞肺癌且行EGFR基因检测患者的临床及影像资料。按照7:3比例随机拆分为训练组119例(EGFR野生型43例和突变型76例)和验证组52例(EGFR野生型19例和突变型33例)。采用深度学习自动分割技术进行病灶感兴趣区勾画,运用pearson相关性分析和最小绝对收缩和选择算子进行特征筛选,应用支持向量机(SVM)构建预测EGFR基因突变的影像组学模型。临床指标及结节定量参数经单因素及多因素分析构建临床模型,临床指标联合影像组学评分构建列线图。采用受试者工作特征(ROC)曲线评估模型的预测效能,绘制决策曲线分析评价模型的临床应用价值。结果:共筛选出4个最佳影像组学特征构建SVM影像组学模型,其在训练组、验证组中预测EGFR基因突变的AUC分别为0.872、0.833。由最大CT值和吸烟史构建临床模型,其在训练组、验证组中预测EGFR基因突变的AUC分别为0.731、0.770。由吸烟史和影像组学评分构建列线图模型,其在训练组、验证组中预测EGFR基因突变的AUC分别为0.879、0.839。结论:基于深度学习自动分割技术构建的胸部CT影像组学模型对预测NSCLC患者EGFR基因突变具有较高的临床应用价值,临床指标加入未能显著提高其预测效能。
关键词
非小细胞肺癌
表皮生长因子受体
体层摄影术
X线计算机
影像组学
深度学习
Keywords
Non-small cell lung cancer
Epidermal growth factor receptor
Tomography,X-ray computed
Radiomics
Deep learning
分类号
R734.2 [医药卫生—肿瘤]
R814.42 [医药卫生—影像医学与核医学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习自动分割技术的胸部CT影像组学模型预测非小细胞肺癌EGFR基因突变
高续
庞奇
张宏杰
王小雷
郝继元
谢玉海
《放射学实践》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部