期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
核偏最小二乘特征提取在混合气体FTIR光谱定量分析中的应用 被引量:7
1
作者 郝惠敏 乔聪明 +1 位作者 汤晓君 刘君华 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2009年第2期115-118,共4页
为进一步提高FTIR光谱法实现特征吸收光谱严重重叠的甲烷、乙烷、丙烷、异丁烷、正丁烷、异戊烷以及正戊烷七组分混合气体定量分析的精度和速度,提出一种核偏最小二乘(Kernel Partial Least Square,KPLS)特征提取耦合支持向量回归机(Sup... 为进一步提高FTIR光谱法实现特征吸收光谱严重重叠的甲烷、乙烷、丙烷、异丁烷、正丁烷、异戊烷以及正戊烷七组分混合气体定量分析的精度和速度,提出一种核偏最小二乘(Kernel Partial Least Square,KPLS)特征提取耦合支持向量回归机(Support Vector Regression Machine,SVR)的红外光谱定量分析新方法.首先采用KPLS方法对上述七组分混合气体的FTIR光谱进行特征提取,然后将特征提取得到的特征组分作为SVR的输入建立混合气体的定量分析模型.对标准混合气体进行定量分析的结果显示:KPLS-SVR模型的预测精度高于未进行特征提取SVR模型预测的精度,同时预测时间也减少了一半.研究表明,KPLS法可以很好地提取隐含在混合气体FTIR光谱数据与其组分浓度之间的非线性特征并有效地消除光谱数据噪声,大幅度降低数据维数,与SVR耦合可以提高红外光谱分析的精度和速度,是一种有效的红外光谱定量分析方法. 展开更多
关键词 核偏最小二乘 支持向量回归机 特征提取 多变量校正模型 红外傅里叶变换(FTIR)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部