期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于异步奖励深度确定性策略梯度的边缘计算多任务资源联合优化
被引量:
4
1
作者
周恒
李丽君
董增寿
《计算机应用研究》
CSCD
北大核心
2023年第5期1491-1496,共6页
移动边缘计算(MEC)系统中,因本地计算能力和电池能量不足,终端设备可以决定是否将延迟敏感性任务卸载到边缘节点中执行。针对卸载过程中用户任务随机产生且系统资源动态变化问题,提出了一种基于异步奖励的深度确定性策略梯度(asynchrono...
移动边缘计算(MEC)系统中,因本地计算能力和电池能量不足,终端设备可以决定是否将延迟敏感性任务卸载到边缘节点中执行。针对卸载过程中用户任务随机产生且系统资源动态变化问题,提出了一种基于异步奖励的深度确定性策略梯度(asynchronous reward deep deterministic policy gradient, ARDDPG)算法。不同于传统独立任务资源分配采用顺序等待执行的策略,该算法在任务产生的时隙即可执行资源分配,不必等待上一个任务执行完毕,以异步模式获取任务计算奖励。ARDDPG算法在时延约束下联合优化了任务卸载决策、动态带宽分配和计算资源分配,并通过深度确定性策略梯度训练神经网络来探索最佳优化性能。仿真结果表明,与随机策略、基线策略和DQN算法相比,ARDDPG算法在不同时延约束和任务生成率下有效降低了任务丢弃率和系统的时延和能耗。
展开更多
关键词
边缘计算
任务卸载
资源联合优化
动态带宽分配
DDPG
在线阅读
下载PDF
职称材料
题名
基于异步奖励深度确定性策略梯度的边缘计算多任务资源联合优化
被引量:
4
1
作者
周恒
李丽君
董增寿
机构
太原科技大学电子信息工程学院智能网新技术研究实验室
出处
《计算机应用研究》
CSCD
北大核心
2023年第5期1491-1496,共6页
基金
山西省回国留学人员科研资助项目(2020-126,2021-134,2021-135)
山西省重点研发计划资助项目(201903D121023)
山西省基础研究计划面上项目(20210302123206)。
文摘
移动边缘计算(MEC)系统中,因本地计算能力和电池能量不足,终端设备可以决定是否将延迟敏感性任务卸载到边缘节点中执行。针对卸载过程中用户任务随机产生且系统资源动态变化问题,提出了一种基于异步奖励的深度确定性策略梯度(asynchronous reward deep deterministic policy gradient, ARDDPG)算法。不同于传统独立任务资源分配采用顺序等待执行的策略,该算法在任务产生的时隙即可执行资源分配,不必等待上一个任务执行完毕,以异步模式获取任务计算奖励。ARDDPG算法在时延约束下联合优化了任务卸载决策、动态带宽分配和计算资源分配,并通过深度确定性策略梯度训练神经网络来探索最佳优化性能。仿真结果表明,与随机策略、基线策略和DQN算法相比,ARDDPG算法在不同时延约束和任务生成率下有效降低了任务丢弃率和系统的时延和能耗。
关键词
边缘计算
任务卸载
资源联合优化
动态带宽分配
DDPG
Keywords
edge computing
task offloading
resource joint optimization
dynamic bandwidth allocation
DDPG
分类号
TN915.07 [电子电信—通信与信息系统]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于异步奖励深度确定性策略梯度的边缘计算多任务资源联合优化
周恒
李丽君
董增寿
《计算机应用研究》
CSCD
北大核心
2023
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部