期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
An electron-rich sulfur host for advanced Zn-S batteries
1
作者 CHEN Jia-jun XU Yang +5 位作者 ZHAO Zhen-xin LIANG Ming-fan DING Jie YE Yu-chen XIAO Qing-yuan WANG Xiao-min 《新型炭材料(中英文)》 北大核心 2025年第5期1074-1084,I0007-I0018,共23页
Aqueous Zn-S batteries have shown great potential in advanced en-ergy storage systems due to their low cost,high theoretical capacity,and in-trinsic safety.However,the slow kinet-ics and low electrical conductivity of... Aqueous Zn-S batteries have shown great potential in advanced en-ergy storage systems due to their low cost,high theoretical capacity,and in-trinsic safety.However,the slow kinet-ics and low electrical conductivity of sul-fur prevent the full use of their capacity,leading to poor cycling performance.We used graphite carbon nitride(g-C_(3)N_(4))as the nitrogen source,and nitrogen-doped Ketjenblack(NKB)was synthesized by solid-phase calcination for use as the sulfur host.Results demonstrate that pyrrolic nitrogen serves as the primary catalytic active site in the sulfur reduction process.The high electronegativity of nitrogen significantly alters the charge distribution of the carbon matrix,changing the electron distribution around sulfur and rendering it electron-rich,which increases the interaction between S and Zn^(2+)and accelerates the reduction kinetics.NKB also forms a three-dimensional cross-linked carbon sphere network,providing abundant defect sites and a large specific surface area,which facilitates electron transfer and improves electrolyte wettability.Combined with the contribution of the ZnI2 additive,the Zn-S battery prepared with the precursor of a g-C_(3)N_(4)∶KB ratio of 3∶4 achieved an ultrahigh discharge capacity of 2069 mAh g^(-1) at a current density of 1 A/g.It also had an excellent rate performance(1257 mAh g^(-1) at 10 A/g)and a long cycling stability(705 mAh g^(-1) after 180 cycles at 5 A/g).This study provides a simple and effective strategy for improving the reduction kinetics of the sulfur cathode in Zn-S batteries and design-ing advanced cathode materials. 展开更多
关键词 Zn-S Batteries Nitrogen-doped Ketjenblack Catalysis Electron transfer Cathode
在线阅读 下载PDF
Enhancing energy density in planar micro-supercapacitors:The role of few-layer graphite/carbon black/NiCo_(2)O_(4) composite materials
2
作者 ZHANG Wanggang HUANG Lei +3 位作者 WANG Menghu WANG Jian WEI Aili LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第5期646-662,共17页
The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this is... The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies. 展开更多
关键词 graphite/carbon black composite NiCo_(2)O_(4) screen printing planar micro-supercapacitor energy density mechanical flexibility
在线阅读 下载PDF
Coating super-crosslinked polycyclic aromatic molecules on hard carbon microspheres for a sodium-ion battery anode
3
作者 YE Yong-hong YU Xing-bo +5 位作者 ZHANG Guo-li LI Hui-hui GUAN Sheng-qin WANG Jian-long LI Kai-xi GUAN Tao-tao 《新型炭材料(中英文)》 北大核心 2025年第5期1098-1112,I0022-I0028,共22页
Sodium-ion batteries(SIBs)have emerged as a promising contender for next-gener-ation energy storage systems.Hard carbon is re-garded as the most promising anode for commer-cial SIB,however,the large number of defects ... Sodium-ion batteries(SIBs)have emerged as a promising contender for next-gener-ation energy storage systems.Hard carbon is re-garded as the most promising anode for commer-cial SIB,however,the large number of defects on its surface cause irreversible electrolyte consump-tion and an uneven solid electrolyte interphase film.An advanced molecular engineering strategy to coat hard carbon with polycyclic aromatic mo-lecules is reported.Specifically,polystyrene-based carbon microspheres(CSs)were first synthesized and then coated with polycyclic aromatic mo-lecules derived from coal tar pitch by spray-drying and followed by oxidation.Compared to the traditional CVD coating meth-od,this molecular framework strategy has been shown to reduce the number of defects on the surface of CSs without sacrifi-cing internal storage sites and suppressing transport kinetics in hosting the sodium ions.Besides the lower surface defect con-centration,the synthesized hybrid carbon microspheres(HCSs)have a larger grain size and more abundant closed pores,and have a higher reversible sodium storage capacity.A HCS-P-60%electrode has a capacity of 332.3 mAh g^(-1)with an initial Cou-lombic efficiency of 88.5%.It also has a superior rate performance of 246.6 mAh g^(-1)at 2 C and a 95.2%capacity retention after 100 cycles at 0.2 C.This work offers new insights into designing high-performance hard carbon microsphere anodes,advan-cing the commercialization of sodium-ion batteries. 展开更多
关键词 Hard carbon Carbon microsphere Coal tar pitch Sodium-ion battery ANODE
在线阅读 下载PDF
A N-doped carbon with encapsulated Fe and Co particles derived from a metal organic framework for use as the anode in lithium-ion batteries
4
作者 CHEN Ren-tian ZHU Yu-xin +5 位作者 LUO Rui JIANG Xiao-nuo SI Hong-xiang QIU Xiang-yun WANG Qian WEI Tao 《新型炭材料(中英文)》 北大核心 2025年第2期363-376,共14页
Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)... Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)O dis-solved in N,N-dimethylformamide,and were converted into Fe-Co embedded in N-doped porous carbon polyhedra by pyrolysis in a nitrogen atmosphere.During pyrolysis,the or-ganic ligands transformed into N-doped porous carbon which improved their structural stability and also their electrical contact with other materials.The Fe and Co are tightly bound together because of their encapsulation by the carbon nitride and are well dispersed in the carbon matrix,and improve the material’s conductivity and stability and provide additional capacity.When used as the anode for lithium-ion batteries,the material gives an initial capacity of up to 2230.7 mAh g^(-1)and a reversible capa-city of 1146.3 mAh g^(-1)is retained after 500 cycles at a current density of 0.5 A g^(-1),making it an excellent candidate for this purpose. 展开更多
关键词 Metal-organic frameworks FeCo alloy Lithium-ion battery Anode materials
在线阅读 下载PDF
Effect of GaInP and GaAsP inserted into waveguide/barrier interface on carrier leakage in InAlGaAs quantum well 808-nm laser diode
5
作者 FU Meng-jie DONG Hai-liang +3 位作者 JIA Zhi-gang JIA Wei LIANG Jian XU Bing-she 《中国光学(中英文)》 北大核心 2025年第1期186-197,共12页
There is nonradiative recombination in waveguide region owing to severe carrier leakage,which in turn reduces output power and wall-plug efficiency.In this paper,we designed a novel epitaxial structure,which suppresse... There is nonradiative recombination in waveguide region owing to severe carrier leakage,which in turn reduces output power and wall-plug efficiency.In this paper,we designed a novel epitaxial structure,which suppresses carrier leakage by inserting n-Ga_(0.55)In_(0.45)P and p-GaAs_(0.6)P_(0.4) between barriers and waveguide layers,respectively,to modulate the energy band structure and to increase the height of barrier.The results show that the leakage current density reduces by 87.71%,compared to traditional structure.The nonradiative recombination current density of novel structure reduces to 37.411 A/cm^(2),and the output power reaches 12.80 W with wall-plug efficiency of 78.24%at an injection current density 5 A/cm^(2) at room temperature.In addition,the temperature drift coefficient of center wavelength is 0.206 nm/℃at the temperature range from 5℃to 65℃,and the slope of fitted straight line of threshold current with temperature variation is 0.00113.The novel epitaxial structure provides a theoretical basis for achieving high-power laser diode. 展开更多
关键词 808-nm laser diode Ga_(0.55)In_(0.45)P and GaAs_(0.6)P_(0.4)insertion layers InAlGaAs quantum well carrier leakage
在线阅读 下载PDF
In-situ photodeposition of co-catalyst Ni_(2)P on CdS for photocatalytic conversion of ethanol for synergistic hydrogen production
6
作者 LIU Yiming MIAO Jingjing +2 位作者 ZHANG Wanggang WEI Aili WANG Jian 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第11期1629-1640,共12页
In this study,Ni_(2)P/CdS composites were constructed by depositing non-precious metal co-catalyst Ni_(2)P on a one-dimensional network of CdS using a simple in-situ photodeposition method.The prepared photocatalysts ... In this study,Ni_(2)P/CdS composites were constructed by depositing non-precious metal co-catalyst Ni_(2)P on a one-dimensional network of CdS using a simple in-situ photodeposition method.The prepared photocatalysts promoted the decomposition of ethanol into high-value-added products while generating hydrogen.The composite photoanodes loaded with the Ni_(2)P co-catalysts showed significantly higher ethanol conversion and hydrogen production in the visible light region,which was almost three times higher than that of pure CdS.The main products of photocatalytic ethanol production are acetaldehyde(AA)and 2,3-butanediol(2,3-BDA).Compared with CdS,the selectivity of the composite photocatalysts for converting ethanol to acetaldehyde was significantly improved(62% to 78%).Characterization of the prepared photocatalysts confirmed that the loading of Ni_(2)P co-catalysts on CdS not only broadened the optical region of the catalysts for trapping light but also effectively promoted the separation and transfer of charge carriers,which significantly improved the photocatalytic efficiency of ethanol conversion and hydrogen production in the catalysts.It has been proven through Electron Paramagnetic Resonance testing that loading a Ni_(2)P co-catalyst on CdS is beneficial for the adsorption of hydroxyethyl radicals(*CH(OH)CH_(3)),thereby further improving the selectivity of acetaldehyde.This study plays an important role in the rational design of composite catalyst structures and the introduction of co-catalysts to improve catalyst performance,promote green chemistry,advocate a low-carbon society,and promote sustainable development. 展开更多
关键词 photocatalysis Ni_(2)P/CdS ethanol conversion hydrogen production
在线阅读 下载PDF
微波合成体系中十六烷基三甲基溴化铵的量对PbS形貌的影响 被引量:1
7
作者 梁建 危兆玲 +3 位作者 李天保 赵君芙 李婧 许并社 《功能材料》 EI CAS CSCD 北大核心 2011年第B06期460-463,共4页
在两个微波合成体系中,考察了十六烷基三甲基溴化铵(CTAB)的量对PbS形貌的影响,分别得出了星形和花状两种结构的最佳制备条件。结果显示在三水合乙酸铅为铅源、硫脲为硫源、二甲基亚砜(DMSO)作溶剂的体系中,加入0.1g CTAB,可形成完美的... 在两个微波合成体系中,考察了十六烷基三甲基溴化铵(CTAB)的量对PbS形貌的影响,分别得出了星形和花状两种结构的最佳制备条件。结果显示在三水合乙酸铅为铅源、硫脲为硫源、二甲基亚砜(DMSO)作溶剂的体系中,加入0.1g CTAB,可形成完美的星形结构;不加CTAB时形成星形结构PbS的表面相对较光滑;当CTAB的加入量为0.05g时,则形成了纳米枝状结构。而在铅源、硫源和溶剂分别为硝酸铅、L-半胱氨酸和去离子水体系,加入0.05gCTAB时,可形成完美的花状结构;不加CTAB时,形成片状结构和部分立方体结构;当CTAB的加入量为0.025g时,虽然没有形成明显的花状结构,但是有组装成花状结构的趋势。同时结合实验和文献对星形结构和花状结构PbS的形成机理进行初步探讨。 展开更多
关键词 PBS CTAB 微波法 星形 花状
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部