Aqueous Zn-S batteries have shown great potential in advanced en-ergy storage systems due to their low cost,high theoretical capacity,and in-trinsic safety.However,the slow kinet-ics and low electrical conductivity of...Aqueous Zn-S batteries have shown great potential in advanced en-ergy storage systems due to their low cost,high theoretical capacity,and in-trinsic safety.However,the slow kinet-ics and low electrical conductivity of sul-fur prevent the full use of their capacity,leading to poor cycling performance.We used graphite carbon nitride(g-C_(3)N_(4))as the nitrogen source,and nitrogen-doped Ketjenblack(NKB)was synthesized by solid-phase calcination for use as the sulfur host.Results demonstrate that pyrrolic nitrogen serves as the primary catalytic active site in the sulfur reduction process.The high electronegativity of nitrogen significantly alters the charge distribution of the carbon matrix,changing the electron distribution around sulfur and rendering it electron-rich,which increases the interaction between S and Zn^(2+)and accelerates the reduction kinetics.NKB also forms a three-dimensional cross-linked carbon sphere network,providing abundant defect sites and a large specific surface area,which facilitates electron transfer and improves electrolyte wettability.Combined with the contribution of the ZnI2 additive,the Zn-S battery prepared with the precursor of a g-C_(3)N_(4)∶KB ratio of 3∶4 achieved an ultrahigh discharge capacity of 2069 mAh g^(-1) at a current density of 1 A/g.It also had an excellent rate performance(1257 mAh g^(-1) at 10 A/g)and a long cycling stability(705 mAh g^(-1) after 180 cycles at 5 A/g).This study provides a simple and effective strategy for improving the reduction kinetics of the sulfur cathode in Zn-S batteries and design-ing advanced cathode materials.展开更多
The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this is...The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.展开更多
Sodium-ion batteries(SIBs)have emerged as a promising contender for next-gener-ation energy storage systems.Hard carbon is re-garded as the most promising anode for commer-cial SIB,however,the large number of defects ...Sodium-ion batteries(SIBs)have emerged as a promising contender for next-gener-ation energy storage systems.Hard carbon is re-garded as the most promising anode for commer-cial SIB,however,the large number of defects on its surface cause irreversible electrolyte consump-tion and an uneven solid electrolyte interphase film.An advanced molecular engineering strategy to coat hard carbon with polycyclic aromatic mo-lecules is reported.Specifically,polystyrene-based carbon microspheres(CSs)were first synthesized and then coated with polycyclic aromatic mo-lecules derived from coal tar pitch by spray-drying and followed by oxidation.Compared to the traditional CVD coating meth-od,this molecular framework strategy has been shown to reduce the number of defects on the surface of CSs without sacrifi-cing internal storage sites and suppressing transport kinetics in hosting the sodium ions.Besides the lower surface defect con-centration,the synthesized hybrid carbon microspheres(HCSs)have a larger grain size and more abundant closed pores,and have a higher reversible sodium storage capacity.A HCS-P-60%electrode has a capacity of 332.3 mAh g^(-1)with an initial Cou-lombic efficiency of 88.5%.It also has a superior rate performance of 246.6 mAh g^(-1)at 2 C and a 95.2%capacity retention after 100 cycles at 0.2 C.This work offers new insights into designing high-performance hard carbon microsphere anodes,advan-cing the commercialization of sodium-ion batteries.展开更多
Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)...Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)O dis-solved in N,N-dimethylformamide,and were converted into Fe-Co embedded in N-doped porous carbon polyhedra by pyrolysis in a nitrogen atmosphere.During pyrolysis,the or-ganic ligands transformed into N-doped porous carbon which improved their structural stability and also their electrical contact with other materials.The Fe and Co are tightly bound together because of their encapsulation by the carbon nitride and are well dispersed in the carbon matrix,and improve the material’s conductivity and stability and provide additional capacity.When used as the anode for lithium-ion batteries,the material gives an initial capacity of up to 2230.7 mAh g^(-1)and a reversible capa-city of 1146.3 mAh g^(-1)is retained after 500 cycles at a current density of 0.5 A g^(-1),making it an excellent candidate for this purpose.展开更多
There is nonradiative recombination in waveguide region owing to severe carrier leakage,which in turn reduces output power and wall-plug efficiency.In this paper,we designed a novel epitaxial structure,which suppresse...There is nonradiative recombination in waveguide region owing to severe carrier leakage,which in turn reduces output power and wall-plug efficiency.In this paper,we designed a novel epitaxial structure,which suppresses carrier leakage by inserting n-Ga_(0.55)In_(0.45)P and p-GaAs_(0.6)P_(0.4) between barriers and waveguide layers,respectively,to modulate the energy band structure and to increase the height of barrier.The results show that the leakage current density reduces by 87.71%,compared to traditional structure.The nonradiative recombination current density of novel structure reduces to 37.411 A/cm^(2),and the output power reaches 12.80 W with wall-plug efficiency of 78.24%at an injection current density 5 A/cm^(2) at room temperature.In addition,the temperature drift coefficient of center wavelength is 0.206 nm/℃at the temperature range from 5℃to 65℃,and the slope of fitted straight line of threshold current with temperature variation is 0.00113.The novel epitaxial structure provides a theoretical basis for achieving high-power laser diode.展开更多
In this study,Ni_(2)P/CdS composites were constructed by depositing non-precious metal co-catalyst Ni_(2)P on a one-dimensional network of CdS using a simple in-situ photodeposition method.The prepared photocatalysts ...In this study,Ni_(2)P/CdS composites were constructed by depositing non-precious metal co-catalyst Ni_(2)P on a one-dimensional network of CdS using a simple in-situ photodeposition method.The prepared photocatalysts promoted the decomposition of ethanol into high-value-added products while generating hydrogen.The composite photoanodes loaded with the Ni_(2)P co-catalysts showed significantly higher ethanol conversion and hydrogen production in the visible light region,which was almost three times higher than that of pure CdS.The main products of photocatalytic ethanol production are acetaldehyde(AA)and 2,3-butanediol(2,3-BDA).Compared with CdS,the selectivity of the composite photocatalysts for converting ethanol to acetaldehyde was significantly improved(62% to 78%).Characterization of the prepared photocatalysts confirmed that the loading of Ni_(2)P co-catalysts on CdS not only broadened the optical region of the catalysts for trapping light but also effectively promoted the separation and transfer of charge carriers,which significantly improved the photocatalytic efficiency of ethanol conversion and hydrogen production in the catalysts.It has been proven through Electron Paramagnetic Resonance testing that loading a Ni_(2)P co-catalyst on CdS is beneficial for the adsorption of hydroxyethyl radicals(*CH(OH)CH_(3)),thereby further improving the selectivity of acetaldehyde.This study plays an important role in the rational design of composite catalyst structures and the introduction of co-catalysts to improve catalyst performance,promote green chemistry,advocate a low-carbon society,and promote sustainable development.展开更多
文摘Aqueous Zn-S batteries have shown great potential in advanced en-ergy storage systems due to their low cost,high theoretical capacity,and in-trinsic safety.However,the slow kinet-ics and low electrical conductivity of sul-fur prevent the full use of their capacity,leading to poor cycling performance.We used graphite carbon nitride(g-C_(3)N_(4))as the nitrogen source,and nitrogen-doped Ketjenblack(NKB)was synthesized by solid-phase calcination for use as the sulfur host.Results demonstrate that pyrrolic nitrogen serves as the primary catalytic active site in the sulfur reduction process.The high electronegativity of nitrogen significantly alters the charge distribution of the carbon matrix,changing the electron distribution around sulfur and rendering it electron-rich,which increases the interaction between S and Zn^(2+)and accelerates the reduction kinetics.NKB also forms a three-dimensional cross-linked carbon sphere network,providing abundant defect sites and a large specific surface area,which facilitates electron transfer and improves electrolyte wettability.Combined with the contribution of the ZnI2 additive,the Zn-S battery prepared with the precursor of a g-C_(3)N_(4)∶KB ratio of 3∶4 achieved an ultrahigh discharge capacity of 2069 mAh g^(-1) at a current density of 1 A/g.It also had an excellent rate performance(1257 mAh g^(-1) at 10 A/g)and a long cycling stability(705 mAh g^(-1) after 180 cycles at 5 A/g).This study provides a simple and effective strategy for improving the reduction kinetics of the sulfur cathode in Zn-S batteries and design-ing advanced cathode materials.
基金supported by the Shanxi Province Central Guidance Fund for Local Science and Technology Development Project(YDZJSX2024D030)the National Natural Science Foundation of China(22075197,22278290)+2 种基金the Shanxi Province Key Research and Development Program Project(2021020660301013)the Shanxi Provincial Natural Science Foundation of China(202103021224079)the Research and Development Project of Key Core and Common Technology of Shanxi Province(20201102018).
文摘The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.
文摘Sodium-ion batteries(SIBs)have emerged as a promising contender for next-gener-ation energy storage systems.Hard carbon is re-garded as the most promising anode for commer-cial SIB,however,the large number of defects on its surface cause irreversible electrolyte consump-tion and an uneven solid electrolyte interphase film.An advanced molecular engineering strategy to coat hard carbon with polycyclic aromatic mo-lecules is reported.Specifically,polystyrene-based carbon microspheres(CSs)were first synthesized and then coated with polycyclic aromatic mo-lecules derived from coal tar pitch by spray-drying and followed by oxidation.Compared to the traditional CVD coating meth-od,this molecular framework strategy has been shown to reduce the number of defects on the surface of CSs without sacrifi-cing internal storage sites and suppressing transport kinetics in hosting the sodium ions.Besides the lower surface defect con-centration,the synthesized hybrid carbon microspheres(HCSs)have a larger grain size and more abundant closed pores,and have a higher reversible sodium storage capacity.A HCS-P-60%electrode has a capacity of 332.3 mAh g^(-1)with an initial Cou-lombic efficiency of 88.5%.It also has a superior rate performance of 246.6 mAh g^(-1)at 2 C and a 95.2%capacity retention after 100 cycles at 0.2 C.This work offers new insights into designing high-performance hard carbon microsphere anodes,advan-cing the commercialization of sodium-ion batteries.
文摘Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)O dis-solved in N,N-dimethylformamide,and were converted into Fe-Co embedded in N-doped porous carbon polyhedra by pyrolysis in a nitrogen atmosphere.During pyrolysis,the or-ganic ligands transformed into N-doped porous carbon which improved their structural stability and also their electrical contact with other materials.The Fe and Co are tightly bound together because of their encapsulation by the carbon nitride and are well dispersed in the carbon matrix,and improve the material’s conductivity and stability and provide additional capacity.When used as the anode for lithium-ion batteries,the material gives an initial capacity of up to 2230.7 mAh g^(-1)and a reversible capa-city of 1146.3 mAh g^(-1)is retained after 500 cycles at a current density of 0.5 A g^(-1),making it an excellent candidate for this purpose.
文摘There is nonradiative recombination in waveguide region owing to severe carrier leakage,which in turn reduces output power and wall-plug efficiency.In this paper,we designed a novel epitaxial structure,which suppresses carrier leakage by inserting n-Ga_(0.55)In_(0.45)P and p-GaAs_(0.6)P_(0.4) between barriers and waveguide layers,respectively,to modulate the energy band structure and to increase the height of barrier.The results show that the leakage current density reduces by 87.71%,compared to traditional structure.The nonradiative recombination current density of novel structure reduces to 37.411 A/cm^(2),and the output power reaches 12.80 W with wall-plug efficiency of 78.24%at an injection current density 5 A/cm^(2) at room temperature.In addition,the temperature drift coefficient of center wavelength is 0.206 nm/℃at the temperature range from 5℃to 65℃,and the slope of fitted straight line of threshold current with temperature variation is 0.00113.The novel epitaxial structure provides a theoretical basis for achieving high-power laser diode.
基金supported by the National Natural Science Foundation of China(22075197,22278290)the Shanxi Provincial Natural Science Foundation of China(202103021224079,201903D421081)the Research and Development Project of Key Core and Common Technology of Shanxi Province(20201102018)。
文摘In this study,Ni_(2)P/CdS composites were constructed by depositing non-precious metal co-catalyst Ni_(2)P on a one-dimensional network of CdS using a simple in-situ photodeposition method.The prepared photocatalysts promoted the decomposition of ethanol into high-value-added products while generating hydrogen.The composite photoanodes loaded with the Ni_(2)P co-catalysts showed significantly higher ethanol conversion and hydrogen production in the visible light region,which was almost three times higher than that of pure CdS.The main products of photocatalytic ethanol production are acetaldehyde(AA)and 2,3-butanediol(2,3-BDA).Compared with CdS,the selectivity of the composite photocatalysts for converting ethanol to acetaldehyde was significantly improved(62% to 78%).Characterization of the prepared photocatalysts confirmed that the loading of Ni_(2)P co-catalysts on CdS not only broadened the optical region of the catalysts for trapping light but also effectively promoted the separation and transfer of charge carriers,which significantly improved the photocatalytic efficiency of ethanol conversion and hydrogen production in the catalysts.It has been proven through Electron Paramagnetic Resonance testing that loading a Ni_(2)P co-catalyst on CdS is beneficial for the adsorption of hydroxyethyl radicals(*CH(OH)CH_(3)),thereby further improving the selectivity of acetaldehyde.This study plays an important role in the rational design of composite catalyst structures and the introduction of co-catalysts to improve catalyst performance,promote green chemistry,advocate a low-carbon society,and promote sustainable development.