期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于VMD-MDE和ELM的柱塞泵微弱故障诊断 被引量:16
1
作者 程珩 励文艳 +3 位作者 权龙 赵立红 关澈 韩露 《振动.测试与诊断》 EI CSCD 北大核心 2020年第4期635-642,818,共9页
针对早期微弱故障信号易受噪声干扰、难以提取和识别的问题,提出一种基于变分模态分解(variational mode decomposition,简称VMD)多尺度散布熵(multiscale dispersion entropy,简称MDE)和极限学习机(extreme learning machine,简称ELM)... 针对早期微弱故障信号易受噪声干扰、难以提取和识别的问题,提出一种基于变分模态分解(variational mode decomposition,简称VMD)多尺度散布熵(multiscale dispersion entropy,简称MDE)和极限学习机(extreme learning machine,简称ELM)的柱塞泵微弱故障诊断方法。首先,采集各状态的振动信号进行VMD分解,得到若干模态分量,根据各模态分量Hilbert包络谱中特征频率能量贡献率大小,提出以归一化特征能量占比(feature energy ratio,简称FER)为重构准则的变分模态分解特征能量重构法(variational mode decomposition feature-energyreconsitution,简称VMDF),对各模态分量进行信号重构;其次,计算重构信号的MDE,对各尺度散布熵进行分析,选择有效尺度散布熵作为特征向量;最后,将提取的特征向量输入ELM完成故障模式识别。柱塞泵不同程度滑靴端面磨损故障的实验结果表明,该方法不仅提高了模式识别效率,还可以更好地反映故障程度变化规律,具有较好的应用性。 展开更多
关键词 变分模态分解 多尺度散布熵 极限学习机 特征能量占比 滑靴磨损 微弱故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部