期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于对比学习的简化图卷积网络推荐算法
1
作者 于雨晨 吴斯琦 +2 位作者 赵清华 吴旭红 王雷 《太原理工大学学报》 北大核心 2025年第3期485-494,共10页
【目的】针对现有的图卷积网络推荐模型存在的模型收敛效率低、过度平滑、高度节点影响表示学习导致长尾项目推荐效果差等问题,提出基于对比学习的简化图卷积网络推荐算法(SGCN-CL)。【方法】算法采用自监督学习方法为用户项目节点生成... 【目的】针对现有的图卷积网络推荐模型存在的模型收敛效率低、过度平滑、高度节点影响表示学习导致长尾项目推荐效果差等问题,提出基于对比学习的简化图卷积网络推荐算法(SGCN-CL)。【方法】算法采用自监督学习方法为用户项目节点生成多视图进行对比学习,以提高模型推荐精度同时提高模型效率,有效改善对长尾项目的推荐;每个视图都对不同的输入进行相同特征提取任务,提出改进消息传播模式的网络SGCN进行相特征提取,以提升模型效率,改善过度平滑;最后进行多个任务联合优化得到推荐结果。【结果】在Amazon-Book、Yelp2018、Gowalla三个公开数据集上进行算法评估,结果表明推荐召回率在三个数据集上分别提升了15.4%、4.3%、1.4%,归一化折损累计增益(NDCG)分别提升了17.8%、4.1%、1.6%,且模型运行效率提升了55%以上。引入对比学习方法后,在对非热门的长尾项目的推荐效果上也有所提升。 展开更多
关键词 图卷积网络 自监督学习 对比学习 长尾项目
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部